Home
Class 12
MATHS
5x+2y=4 7x+3y=5...

5x+2y=4
7x+3y=5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations given by: 1) \( 5x + 2y = 4 \) 2) \( 7x + 3y = 5 \) we will use the method of determinants (Cramer's Rule). ### Step 1: Identify the coefficients We can identify the coefficients from the equations: - For the first equation \( 5x + 2y = 4 \): - \( a_1 = 5 \) - \( b_1 = 2 \) - \( c_1 = -4 \) (since we rearrange it to \( 5x + 2y - 4 = 0 \)) - For the second equation \( 7x + 3y = 5 \): - \( a_2 = 7 \) - \( b_2 = 3 \) - \( c_2 = -5 \) (similarly rearranging) ### Step 2: Check for a unique solution To ensure a unique solution exists, we check the condition: \[ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \] Calculating: \[ \frac{5}{7} \neq \frac{2}{3} \] Since this condition holds true, we can conclude that a unique solution exists. ### Step 3: Calculate \( x \) using Cramer's Rule The formula for \( x \) is given by: \[ x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1} \] Substituting the values: \[ x = \frac{(2)(-5) - (3)(-4)}{(5)(3) - (7)(2)} \] Calculating the numerator: \[ 2 \cdot -5 = -10 \quad \text{and} \quad 3 \cdot -4 = -12 \quad \Rightarrow \quad -10 + 12 = 2 \] Calculating the denominator: \[ 5 \cdot 3 = 15 \quad \text{and} \quad 7 \cdot 2 = 14 \quad \Rightarrow \quad 15 - 14 = 1 \] Thus, we have: \[ x = \frac{2}{1} = 2 \] ### Step 4: Calculate \( y \) using Cramer's Rule The formula for \( y \) is given by: \[ y = \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1} \] Substituting the values: \[ y = \frac{(7)(-4) - (5)(-5)}{(5)(3) - (7)(2)} \] Calculating the numerator: \[ 7 \cdot -4 = -28 \quad \text{and} \quad 5 \cdot -5 = -25 \quad \Rightarrow \quad -28 + 25 = -3 \] The denominator remains the same as before: \[ 15 - 14 = 1 \] Thus, we have: \[ y = \frac{-3}{1} = -3 \] ### Final Solution The solution to the system of equations is: \[ x = 2, \quad y = -3 \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations by matrix method : 5x+7y+2=0 4x+6y+3=0 5x+2y=3 3x+2y=5 3x+4y-5=0 x-y+3=0 3x+y=19 3x-y=23 3x+7y=4 x+2y=-1 3x+y=7 5x+3y=12

5x + 2y = 31 3x + 7y = 36

6x + 5y = 7x + 3y + 1 = 2 ( x + 6y - 1 )

3x+2y=5 2x+3y=7

3x+2y=5 2x-3y=7

Simplify: (2x + 5y)(3x + 4y) - (7x + 3y)(2x + y)

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting : (i) 6x+14y-16=0 , 12x+28y-32=0 (ii) 3x-4y=8 , 3x+4y=11 (iii) 5x-2y=7 , 2y-5x=-7 (iv) 4x+7y=19 , 7x-4y=-2 (v) x-2y=7 , 4y-2x=13

The value of x and y in the equations 5x+2y=16 and 7x-4y=2 are :