Home
Class 12
MATHS
2x+8y+5z=5 x+y+z=-2 x+2y-z=2...

2x+8y+5z=5
x+y+z=-2
x+2y-z=2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the Gauss-Jordan method, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( 2x + 8y + 5z = 5 \) 2. \( x + y + z = -2 \) 3. \( x + 2y - z = 2 \) We can represent this system in matrix form as \( AX = B \), where: \[ A = \begin{bmatrix} 2 & 8 & 5 \\ 1 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ -2 \\ 2 \end{bmatrix} \] ### Step 2: Calculate the determinant of matrix A The determinant of matrix \( A \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 2 \cdot (1 \cdot (-1) - 1 \cdot 2) - 8 \cdot (1 \cdot (-1) - 1 \cdot 1) + 5 \cdot (1 \cdot 2 - 1 \cdot 1) \] Calculating this gives: \[ = 2 \cdot (-1 - 2) - 8 \cdot (-1 - 1) + 5 \cdot (2 - 1) = 2 \cdot (-3) - 8 \cdot (-2) + 5 \cdot 1 = -6 + 16 + 5 = 15 \] ### Step 3: Find the adjoint of matrix A To find the adjoint, we first need to calculate the cofactor matrix and then take its transpose. 1. **Cofactor matrix**: - \( C_{11} = \text{det} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = (1)(-1) - (1)(2) = -1 - 2 = -3 \) - \( C_{12} = -\text{det} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = -((1)(-1) - (1)(1)) = -(-1 - 1) = 2 \) - \( C_{13} = \text{det} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = (1)(2) - (1)(1) = 2 - 1 = 1 \) - \( C_{21} = -\text{det} \begin{bmatrix} 8 & 5 \\ 2 & -1 \end{bmatrix} = -((8)(-1) - (5)(2)) = -(-8 - 10) = 18 \) - \( C_{22} = \text{det} \begin{bmatrix} 2 & 5 \\ 1 & -1 \end{bmatrix} = (2)(-1) - (5)(1) = -2 - 5 = -7 \) - \( C_{23} = -\text{det} \begin{bmatrix} 2 & 8 \\ 1 & 1 \end{bmatrix} = -((2)(1) - (8)(1)) = -2 + 8 = 6 \) - \( C_{31} = \text{det} \begin{bmatrix} 8 & 5 \\ 1 & 1 \end{bmatrix} = (8)(1) - (5)(1) = 8 - 5 = 3 \) - \( C_{32} = -\text{det} \begin{bmatrix} 2 & 5 \\ 1 & 1 \end{bmatrix} = -((2)(1) - (5)(1)) = -2 + 5 = 3 \) - \( C_{33} = \text{det} \begin{bmatrix} 2 & 8 \\ 1 & 1 \end{bmatrix} = (2)(1) - (8)(1) = 2 - 8 = -6 \) Thus, the cofactor matrix is: \[ C = \begin{bmatrix} -3 & 2 & 1 \\ 18 & -7 & 6 \\ 3 & 3 & -6 \end{bmatrix} \] 2. **Adjoint matrix** (transpose of cofactor matrix): \[ \text{adj}(A) = \begin{bmatrix} -3 & 18 & 3 \\ 2 & -7 & 3 \\ 1 & 6 & -6 \end{bmatrix} \] ### Step 4: Calculate the solution using the formula \( X = A^{-1}B \) Using the formula \( A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \): \[ X = \frac{1}{15} \begin{bmatrix} -3 & 18 & 3 \\ 2 & -7 & 3 \\ 1 & 6 & -6 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ 2 \end{bmatrix} \] Calculating the product: \[ X = \frac{1}{15} \begin{bmatrix} -3 \cdot 5 + 18 \cdot (-2) + 3 \cdot 2 \\ 2 \cdot 5 + (-7) \cdot (-2) + 3 \cdot 2 \\ 1 \cdot 5 + 6 \cdot (-2) + (-6) \cdot 2 \end{bmatrix} \] Calculating each component: 1. First row: \( -15 - 36 + 6 = -45 \) 2. Second row: \( 10 + 14 + 6 = 30 \) 3. Third row: \( 5 - 12 - 12 = -19 \) Thus, \[ X = \frac{1}{15} \begin{bmatrix} -45 \\ 30 \\ -19 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -1.267 \end{bmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = -3, \quad y = 2, \quad z \approx -1.267 \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

2x+3y+3z=5 x-2y+z=-4 3x-y-2z=3

Show that each of the following systems of linear equations is consistent and also find their solutions: 6x+4y=2 9x+6y=3 2x+3y=5 6x+9y=15 5x+3y+7z=4 3x+26 y+2z=9 7x+2y+10 z=5 x-y+z=3 2x+y-z=2 -x-2y+2z=1 x+y+z=6 x+2y+3z=14 x+4y+7z=30 2x+2y-2z=1 4x+4y-z=2 6x+6y+2z=3

Using matrices, solve the following system of equations for x,y and z. 2x+3y+3z=5 , x-2y+z=-4 , 3x-y-2z=3

Add: 5x - 8y + 2z, 3z - 4y - 2x, 6y - z - x and 3x - 2z - 3y

The nature of the intersection of the set of planes: 2x-4y+2z=5,5x-y-z=8 and x+y-z=7 is / are that

2x + 3y + z = 11, x + 2y + z = 8, x-y + z = 2

Prove that Det [[x + y + 2z, x, y], [z, y + z + 2x, y], [z, x, z + x + 2y]] = 2 (x + y + z) ^ 3

Using matrices, solve the following system of equations for x,y and z. 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 .

What should be added to x y+y z+z x to get x y-y z-z x ? -2x y-2y z-2z x (b) -3x y-y z-z x -3x y-3y z-3z x (d) 2x y+2y z+2z x

Solve the system of equations by cramer's rule: 5x-y+4z=5 , 2x+3y+5z=2 , 5x-2y+6z=-1