Home
Class 12
MATHS
2x-3y+5z=16, 3x+ 2y-4z= -4, x + y - ...

2x-3y+5z=16,
3x+ 2y-4z= -4,
x + y - 2z =- 3.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations given by: 1. \( 2x - 3y + 5z = 16 \) 2. \( 3x + 2y - 4z = -4 \) 3. \( x + y - 2z = -3 \) we will use the matrix method. Here are the steps to find the values of \(x\), \(y\), and \(z\): ### Step 1: Write the equations in matrix form We can express the system of equations in the form \( AX = B \), where: \[ A = \begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 16 \\ -4 \\ -3 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \(A\) To find the inverse of matrix \(A\), we first need to calculate its determinant (\( |A| \)): \[ |A| = 2 \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} - (-3) \begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} + 5 \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} = (2)(-2) - (-4)(1) = -4 + 4 = 0 \) 2. \( \begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} = (3)(-2) - (-4)(1) = -6 + 4 = -2 \) 3. \( \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = (3)(1) - (2)(1) = 3 - 2 = 1 \) Now substituting back into the determinant formula: \[ |A| = 2(0) + 3(-2) + 5(1) = 0 - 6 + 5 = -1 \] ### Step 3: Find the adjoint of matrix \(A\) Next, we need to find the adjoint of matrix \(A\). The adjoint is obtained by finding the cofactor matrix and then taking its transpose. Calculating the cofactors: 1. \( C_{11} = \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} = 0 \) 2. \( C_{12} = -\begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} = 2 \) 3. \( C_{13} = \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = 1 \) 4. \( C_{21} = -\begin{vmatrix} -3 & 5 \\ 1 & -2 \end{vmatrix} = -(-6 - 5) = 11 \) 5. \( C_{22} = \begin{vmatrix} 2 & 5 \\ 1 & -2 \end{vmatrix} = -4 - 5 = -9 \) 6. \( C_{23} = -\begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = -(-2 + 3) = -1 \) 7. \( C_{31} = \begin{vmatrix} -3 & 5 \\ 2 & -4 \end{vmatrix} = 12 - 10 = 2 \) 8. \( C_{32} = -\begin{vmatrix} 2 & 5 \\ 3 & -4 \end{vmatrix} = -(-8 - 15) = 23 \) 9. \( C_{33} = \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix} = 4 + 9 = 13 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} 0 & 2 & 1 \\ 11 & -9 & -1 \\ 2 & 23 & 13 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{Adj}(A) = \begin{pmatrix} 0 & 11 & 2 \\ 2 & -9 & 23 \\ 1 & -1 & 13 \end{pmatrix} \] ### Step 4: Find the inverse of matrix \(A\) The inverse of matrix \(A\) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{Adj}(A) = -1 \cdot \begin{pmatrix} 0 & 11 & 2 \\ 2 & -9 & 23 \\ 1 & -1 & 13 \end{pmatrix} = \begin{pmatrix} 0 & -11 & -2 \\ -2 & 9 & -23 \\ -1 & 1 & -13 \end{pmatrix} \] ### Step 5: Multiply \(A^{-1}\) by \(B\) Now we can find \(X\) by multiplying \(A^{-1}\) with \(B\): \[ X = A^{-1}B = \begin{pmatrix} 0 & -11 & -2 \\ -2 & 9 & -23 \\ -1 & 1 & -13 \end{pmatrix} \begin{pmatrix} 16 \\ -4 \\ -3 \end{pmatrix} \] Calculating the multiplication: 1. For \(x\): \[ 0 \cdot 16 + (-11) \cdot (-4) + (-2) \cdot (-3) = 0 + 44 + 6 = 50 \] 2. For \(y\): \[ -2 \cdot 16 + 9 \cdot (-4) + (-23) \cdot (-3) = -32 - 36 + 69 = 1 \] 3. For \(z\): \[ -1 \cdot 16 + 1 \cdot (-4) + (-13) \cdot (-3) = -16 - 4 + 39 = 19 \] Thus, we have: \[ X = \begin{pmatrix} 50 \\ 1 \\ 19 \end{pmatrix} \] ### Final Result The values of \(x\), \(y\), and \(z\) are: \[ x = 50, \quad y = 1, \quad z = 19 \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

Using matrices,solve the following system of equations: 2x-3y+5z=11,3x+2y-4z=-5,x+y-2z=-3

2x = 3y = 4z, x: y: z

The system of equation 2x + y - 3z = 5 3x - 2y + 2z = 5 5x - 3y - z = 16

4x + 3y + 2z =1 x-y + 3z = 4 2x + 5y - 4z = 6 has n solution than n =

The system of linear equations x - 2y + z = 4 2x + 3y - 4z = 1 x - 9y + (2a + 3)z = 5a + 1 has infinitely many solution for:

2x + 3y + 3z = 5, x-2y + z = -4,3x-y-2z = 3

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

Add: 5x - 8y + 2z, 3z - 4y - 2x, 6y - z - x and 3x - 2z - 3y

The system of equation 3x + 4y + 5z = mu x + 2y + 3z = 1 4x + 4y + 4z = delta is inconsistent, then ( delta,mu ) can be