Home
Class 12
MATHS
2x+3y+3z=5 x-2y+z=-4 3x-y-2z=3...

2x+3y+3z=5
x-2y+z=-4
3x-y-2z=3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations using the matrix method, we can follow these steps: ### Given Equations: 1. \( 2x + 3y + 3z = 5 \) (Equation 1) 2. \( x - 2y + z = -4 \) (Equation 2) 3. \( 3x - y - 2z = 3 \) (Equation 3) ### Step 1: Write the system in matrix form We can express the system of equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. The coefficient matrix \( A \) and the constant matrix \( B \) are given by: \[ A = \begin{pmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} \] ### Step 2: Find the inverse of matrix \( A \) To find \( X \), we need to calculate \( A^{-1} \). We will first find the determinant of \( A \). #### Determinant of \( A \): \[ \text{det}(A) = 2 \begin{vmatrix} -2 & 1 \\ -1 & -2 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} + 3 \begin{vmatrix} 1 & -2 \\ 3 & -1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} -2 & 1 \\ -1 & -2 \end{vmatrix} = (-2)(-2) - (1)(-1) = 4 + 1 = 5 \) 2. \( \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = (1)(-2) - (1)(3) = -2 - 3 = -5 \) 3. \( \begin{vmatrix} 1 & -2 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (-2)(3) = -1 + 6 = 5 \) Putting it all together: \[ \text{det}(A) = 2(5) - 3(-5) + 3(5) = 10 + 15 + 15 = 40 \] ### Step 3: Find the adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix. We will calculate the cofactors and then transpose. Calculating cofactors: 1. \( C_{11} = \begin{vmatrix} -2 & 1 \\ -1 & -2 \end{vmatrix} = 5 \) (cofactor is \( 5 \)) 2. \( C_{12} = -\begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = 5 \) (cofactor is \( -5 \)) 3. \( C_{13} = \begin{vmatrix} 1 & -2 \\ 3 & -1 \end{vmatrix} = 5 \) (cofactor is \( 5 \)) 4. \( C_{21} = -\begin{vmatrix} 3 & 3 \\ -1 & -2 \end{vmatrix} = -3 \) (cofactor is \( 3 \)) 5. \( C_{22} = \begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} = -12 \) (cofactor is \( -12 \)) 6. \( C_{23} = -\begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix} = 9 \) (cofactor is \( -9 \)) 7. \( C_{31} = \begin{vmatrix} 3 & 3 \\ -2 & 1 \end{vmatrix} = 9 \) (cofactor is \( 9 \)) 8. \( C_{32} = -\begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = -3 \) (cofactor is \( 3 \)) 9. \( C_{33} = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = -7 \) (cofactor is \( -7 \)) The cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} 5 & -5 & 5 \\ 3 & -12 & 9 \\ 9 & 3 & -7 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} 5 & 3 & 9 \\ -5 & -12 & 3 \\ 5 & 9 & -7 \end{pmatrix} \] ### Step 4: Calculate the inverse of \( A \) Using the formula \( A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \): \[ A^{-1} = \frac{1}{40} \begin{pmatrix} 5 & 3 & 9 \\ -5 & -12 & 3 \\ 5 & 9 & -7 \end{pmatrix} \] ### Step 5: Solve for \( X \) Now, we can find \( X \) using \( X = A^{-1}B \): \[ X = \frac{1}{40} \begin{pmatrix} 5 & 3 & 9 \\ -5 & -12 & 3 \\ 5 & 9 & -7 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} \] Calculating the product: 1. First row: \( 5(5) + 3(-4) + 9(3) = 25 - 12 + 27 = 40 \) 2. Second row: \( -5(5) + -12(-4) + 3(3) = -25 + 48 + 9 = 32 \) 3. Third row: \( 5(5) + 9(-4) + -7(3) = 25 - 36 - 21 = -32 \) Thus, \[ X = \frac{1}{40} \begin{pmatrix} 40 \\ 32 \\ -32 \end{pmatrix} = \begin{pmatrix} 1 \\ 0.8 \\ -0.8 \end{pmatrix} \] ### Final Solution: The solution to the system of equations is: \[ x = 1, \quad y = 0.8, \quad z = -0.8 \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

The system of equation 2x+y-3z=5 3x-2y+2z=5 and 5x-3y-z=16

2x = 3y = 4z, x: y: z

The system of equation 2x + y - 3z = 5 3x-2y+2z=5 and 5x-3y-z=16

If 2x+y-z=5,3x-2y+2z=-3 and x-3y-3z=-2 then the value of y satisfying the system of equation is

x+y+z=1 x-2y+3z=2 5x-3y+z=3

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

if 2x+3y-3z=0;5x-2y+2z=19;x+7y-5z=5. Then the value of x+y-z is

Solve the system of equations by cramer's rule: x+y+z=3 , 2x-y+3z=4 and x+2y-z=2

The system of equation 2x + y - 3z = 5 3x - 2y + 2z = 5 5x - 3y - z = 16