Home
Class 12
MATHS
3x-4y+2z=-1 2x+3y+5z=7 x+z=2...

3x-4y+2z=-1
2x+3y+5z=7
x+z=2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations: 1. **Equations:** \[ \begin{align*} (1) & \quad 3x - 4y + 2z = -1 \\ (2) & \quad 2x + 3y + 5z = 7 \\ (3) & \quad x + z = 2 \end{align*} \] 2. **Express \( z \) in terms of \( x \) from equation (3):** \[ z = 2 - x \quad \text{(Equation 4)} \] 3. **Substitute \( z \) from equation (4) into equations (1) and (2):** - Substitute into equation (1): \[ 3x - 4y + 2(2 - x) = -1 \] Simplifying this: \[ 3x - 4y + 4 - 2x = -1 \] \[ (3x - 2x) - 4y + 4 = -1 \] \[ x - 4y + 4 = -1 \] \[ x - 4y = -5 \quad \text{(Equation 5)} \] - Substitute into equation (2): \[ 2x + 3y + 5(2 - x) = 7 \] Simplifying this: \[ 2x + 3y + 10 - 5x = 7 \] \[ (2x - 5x) + 3y + 10 = 7 \] \[ -3x + 3y + 10 = 7 \] \[ -3x + 3y = -3 \] \[ -x + y = -1 \quad \text{(Equation 6)} \] 4. **Now we have two new equations (5) and (6):** \[ \begin{align*} (5) & \quad x - 4y = -5 \\ (6) & \quad -x + y = -1 \end{align*} \] 5. **Add equations (5) and (6):** \[ (x - 4y) + (-x + y) = -5 - 1 \] This simplifies to: \[ -3y = -6 \] \[ y = 2 \] 6. **Substitute \( y = 2 \) back into equation (6) to find \( x \):** \[ -x + 2 = -1 \] \[ -x = -3 \] \[ x = 3 \] 7. **Now substitute \( x = 3 \) back into equation (4) to find \( z \):** \[ z = 2 - 3 = -1 \] 8. **Final solution:** \[ \begin{align*} x & = 3 \\ y & = 2 \\ z & = -1 \end{align*} \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

3x+4y+7z=4, 2x+y+ 3z= 3, x + 2y +3z =8.

5x-y=-7 2x+3z=1 3y-z=5

If 3x-4y+z=7; 2x-z+3y=19 ; x+2y+2z=24 , then what is the value of z ? (a) 4 (b) 5 (c) 6 (d) 8

Add: 5x - 8y + 2z, 3z - 4y - 2x, 6y - z - x and 3x - 2z - 3y

x-y=3 2x+3y+4z=17 y+2z=7

Show that each of the following systems of linear equations is consistent and also find their solutions: 6x+4y=2 9x+6y=3 2x+3y=5 6x+9y=15 5x+3y+7z=4 3x+26 y+2z=9 7x+2y+10 z=5 x-y+z=3 2x+y-z=2 -x-2y+2z=1 x+y+z=6 x+2y+3z=14 x+4y+7z=30 2x+2y-2z=1 4x+4y-z=2 6x+6y+2z=3

4x -5y-11z=12,. x-3y+z=1 2x + 3y-7z = 2

2x-3y+5z=16, 3x+ 2y-4z= -4, x + y - 2z =- 3.