Home
Class 12
MATHS
2x+y-z=1 x-y+z=2 3x+y-2z=-1...

2x+y-z=1
x-y+z=2
3x+y-2z=-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations given by: 1. \( 2x + y - z = 1 \) 2. \( x - y + z = 2 \) 3. \( 3x + y - 2z = -1 \) we will use the matrix method. ### Step 1: Formulate the matrices We start by identifying the coefficient matrix \( A \), the variable matrix \( x \), and the constant matrix \( B \). - Coefficient matrix \( A \): \[ A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \\ 3 & 1 & -2 \end{bmatrix} \] - Variable matrix \( x \): \[ x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] - Constant matrix \( B \): \[ B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \] ### Step 2: Find the inverse of matrix \( A \) To find \( x \), we need to compute \( A^{-1} \) and then multiply it by \( B \). The formula for the inverse of a matrix is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] #### Step 2.1: Calculate the determinant of \( A \) We calculate the determinant of \( A \) using the formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \). For our matrix: \[ \text{det}(A) = 2((-1)(-2) - (1)(1)) - 1(1(-2) - (1)(3)) - (-1)(1(1) - (-1)(3)) \] Calculating this gives: \[ = 2(2 - 1) - 1(-2 - 3) + 1(1 + 3) = 2(1) + 5 + 4 = 11 \] #### Step 2.2: Calculate the adjugate of \( A \) Next, we find the adjugate of \( A \), which involves calculating the cofactor matrix and then transposing it. The cofactor matrix \( C \) is calculated as follows: - \( C_{11} = \text{det} \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} = (-1)(-2) - (1)(1) = 2 - 1 = 1 \) - \( C_{12} = -\text{det} \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} = -((1)(-2) - (1)(3)) = -(-2 - 3) = 5 \) - \( C_{13} = \text{det} \begin{bmatrix} 1 & -1 \\ 3 & 1 \end{bmatrix} = (1)(1) - (-1)(3) = 1 + 3 = 4 \) Continuing this for all elements: \[ C = \begin{bmatrix} 1 & 5 & 4 \\ -1 & 1 & 0 \\ -3 & -3 & 1 \end{bmatrix} \] Now, we take the transpose of the cofactor matrix to get the adjugate: \[ \text{adj}(A) = \begin{bmatrix} 1 & -1 & -3 \\ 5 & 1 & -3 \\ 4 & 0 & 1 \end{bmatrix} \] ### Step 3: Calculate \( A^{-1} \) Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{11} \begin{bmatrix} 1 & -1 & -3 \\ 5 & 1 & -3 \\ 4 & 0 & 1 \end{bmatrix} \] ### Step 4: Multiply \( A^{-1} \) by \( B \) Now we compute \( x = A^{-1}B \): \[ x = \frac{1}{11} \begin{bmatrix} 1 & -1 & -3 \\ 5 & 1 & -3 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \] Calculating the multiplication: \[ = \frac{1}{11} \begin{bmatrix} 1 \cdot 1 + (-1) \cdot 2 + (-3) \cdot (-1) \\ 5 \cdot 1 + 1 \cdot 2 + (-3) \cdot (-1) \\ 4 \cdot 1 + 0 \cdot 2 + 1 \cdot (-1) \end{bmatrix} \] \[ = \frac{1}{11} \begin{bmatrix} 1 - 2 + 3 \\ 5 + 2 + 3 \\ 4 + 0 - 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 2 \\ 10 \\ 3 \end{bmatrix} \] ### Step 5: Final values of \( x, y, z \) Thus, we have: \[ x = \frac{2}{11}, \quad y = \frac{10}{11}, \quad z = \frac{3}{11} \] ### Summary of the solution: The solution to the system of equations is: \[ x = \frac{2}{11}, \quad y = \frac{10}{11}, \quad z = \frac{3}{11} \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

x+y-z=1 3x+y-2z=3 x-y-z=-1

The intersection of the spheres x^(2)+y^(2)+z^(2)+7x-2y-z=13andx^(2)+y^(2)+z^(2)-3x+3y+4z=8 is the same as the intersection of one of the spheres and the plane a.x-y-z=1 b.x-2y-z=1 c.x-y-2z=1 d.2x-y-z=1

x-y+z=1 2x+y-z=2 x-2y-z=4

x+y+z=1 x-2y+3z=2 5x-3y+z=3

System of linear equations in x,y,z 2x+y+z=1,x-2y+z=2,3x-y +2z=3 have infinite solutions which

x+y+z=4 2x-y+z=-1 2x+y-3z=-9

Solve by matrix inversion 2x+y+z=1,x-y+2z=-1,3x+2y-z=4

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

What should be added to x y+y z+z x to get x y-y z-z x ? -2x y-2y z-2z x (b) -3x y-y z-z x -3x y-3y z-3z x (d) 2x y+2y z+2z x

Solve x+y+z=1 , 2x+2y+2z=2 , 3x+3y+3z=4