Home
Class 12
MATHS
x-2y+z=0 y-z=2 2x-3z=10...

x-2y+z=0
y-z=2
2x-3z=10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations using the matrix method, we will follow these steps: Given equations: 1. \( x - 2y + z = 0 \) (Equation 1) 2. \( y - z = 2 \) (Equation 2) 3. \( 2x - 3z = 10 \) (Equation 3) ### Step 1: Write the equations in standard form We can rewrite the equations in standard form to identify the coefficients: 1. \( x - 2y + z = 0 \) → \( 1x - 2y + 1z = 0 \) 2. \( 0x + 1y - 1z = 2 \) → \( 0x + 1y - 1z = 2 \) 3. \( 2x + 0y - 3z = 10 \) → \( 2x + 0y - 3z = 10 \) ### Step 2: Form the coefficient matrix \( A \), variable matrix \( X \), and constant matrix \( B \) The coefficient matrix \( A \), variable matrix \( X \), and constant matrix \( B \) can be defined as follows: \[ A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 2 & 0 & -3 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 2 \\ 10 \end{pmatrix} \] ### Step 3: Find the determinant of matrix \( A \) To find the determinant of matrix \( A \): \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & -1 \\ 0 & -3 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 0 & -1 \\ 2 & -3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} \] Calculating the determinants: \[ \text{det}(A) = 1 \cdot (1 \cdot -3 - 0 \cdot -1) + 2 \cdot (0 \cdot -3 - 2 \cdot -1) + 1 \cdot (0 \cdot 0 - 2 \cdot 1) \] \[ = -3 + 2 \cdot 2 + 0 = -3 + 4 = 1 \] ### Step 4: Find the inverse of matrix \( A \) Since the determinant is non-zero, we can find the inverse of matrix \( A \): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adj}(A) \] To find the adjoint \( \text{Adj}(A) \), we need to calculate the cofactor matrix and then take its transpose. ### Step 5: Calculate the adjoint of matrix \( A \) The cofactor matrix is calculated as follows: \[ \text{Cofactor}(A) = \begin{pmatrix} \begin{vmatrix} 1 & -1 \\ 0 & -3 \end{vmatrix} & -\begin{vmatrix} 0 & -1 \\ 2 & -3 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} \\ -\begin{vmatrix} -2 & 1 \\ 0 & -3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} & -\begin{vmatrix} 1 & -2 \\ 2 & 0 \end{vmatrix} \\ \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} & \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} \end{pmatrix} \] Calculating each of these determinants will give us the cofactor matrix, and taking the transpose will yield the adjoint matrix. ### Step 6: Multiply the inverse of \( A \) with \( B \) Once we have \( A^{-1} \), we can find the solution by multiplying \( A^{-1} \) with \( B \): \[ X = A^{-1}B \] ### Step 7: Solve for \( x, y, z \) The resulting matrix \( X \) will give us the values of \( x, y, z \).
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

The number of non-trivial solutions of the system x=y+z=0, x+2y-z=0, 2x+y+3z=0 , is

Find equation of angle bisector of plane x+2y+3z-z=0 and 2x-3y+z+4=0 .

Show that each of the following systems of linear equations is consistent and also find their solutions: 6x+4y=2 9x+6y=3 2x+3y=5 6x+9y=15 5x+3y+7z=4 3x+26 y+2z=9 7x+2y+10 z=5 x-y+z=3 2x+y-z=2 -x-2y+2z=1 x+y+z=6 x+2y+3z=14 x+4y+7z=30 2x+2y-2z=1 4x+4y-z=2 6x+6y+2z=3

x+y+z=1 x-2y+3z=2 5x-3y+z=3

x+y+z=4 2x-y+z=-1 2x+y-3z=-9

x+2y+z=4 -x+y+z=0 x-3y+z=4

2x+y-z=1 x-y+z=2 3x+y-2z=-1

If the system of equations, 2x + 3y-z = 0, x + ky -2z = 0 " and " 2x-y+z = 0 has a non-trivial solution (x, y, z), then (x)/(y) + (y)/(z) + (z)/(x) + k is equal to