Home
Class 12
MATHS
find the value of x, y, z with the help ...

find the value of x, y, z with the help of determinant method
4x+3y+2z=60
x+2y+3z=45
6x+2y+3z=70

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the determinant method, we will follow these steps: ### Given Equations: 1. \( 4x + 3y + 2z = 60 \) (Equation 1) 2. \( x + 2y + 3z = 45 \) (Equation 2) 3. \( 6x + 2y + 3z = 70 \) (Equation 3) ### Step 1: Write the Coefficient Matrix and the Constant Matrix The coefficient matrix \( A \) and the constant matrix \( B \) can be represented as follows: \[ A = \begin{bmatrix} 4 & 3 & 2 \\ 1 & 2 & 3 \\ 6 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 60 \\ 45 \\ 70 \end{bmatrix} \] ### Step 2: Calculate the Determinant of Matrix \( A \) To find the determinant of matrix \( A \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 4(2 \cdot 3 - 3 \cdot 2) - 3(1 \cdot 3 - 3 \cdot 6) + 2(1 \cdot 2 - 2 \cdot 6) \] Calculating each term: 1. \( 4(6 - 6) = 4 \cdot 0 = 0 \) 2. \( -3(3 - 18) = -3 \cdot (-15) = 45 \) 3. \( 2(2 - 12) = 2 \cdot (-10) = -20 \) Thus, \[ \text{det}(A) = 0 + 45 - 20 = 25 \] ### Step 3: Calculate Determinants for \( x, y, z \) Next, we will find the determinants for \( x, y, z \) by replacing the respective columns of \( A \) with the constant matrix \( B \). #### Determinant for \( x \) (denoted as \( D_x \)): Replace the first column of \( A \) with \( B \): \[ D_x = \begin{vmatrix} 60 & 3 & 2 \\ 45 & 2 & 3 \\ 70 & 2 & 3 \end{vmatrix} \] Calculating \( D_x \): \[ D_x = 60(2 \cdot 3 - 3 \cdot 2) - 3(45 \cdot 3 - 70 \cdot 2) + 2(45 \cdot 2 - 70 \cdot 2) \] Calculating each term: 1. \( 60(6 - 6) = 60 \cdot 0 = 0 \) 2. \( -3(135 - 140) = -3 \cdot (-5) = 15 \) 3. \( 2(90 - 140) = 2 \cdot (-50) = -100 \) Thus, \[ D_x = 0 + 15 - 100 = -85 \] #### Determinant for \( y \) (denoted as \( D_y \)): Replace the second column of \( A \) with \( B \): \[ D_y = \begin{vmatrix} 4 & 60 & 2 \\ 1 & 45 & 3 \\ 6 & 70 & 3 \end{vmatrix} \] Calculating \( D_y \): \[ D_y = 4(45 \cdot 3 - 3 \cdot 70) - 60(1 \cdot 3 - 6 \cdot 2) + 2(1 \cdot 70 - 6 \cdot 45) \] Calculating each term: 1. \( 4(135 - 210) = 4 \cdot (-75) = -300 \) 2. \( -60(3 - 12) = -60 \cdot (-9) = 540 \) 3. \( 2(70 - 270) = 2 \cdot (-200) = -400 \) Thus, \[ D_y = -300 + 540 - 400 = -160 \] #### Determinant for \( z \) (denoted as \( D_z \)): Replace the third column of \( A \) with \( B \): \[ D_z = \begin{vmatrix} 4 & 3 & 60 \\ 1 & 2 & 45 \\ 6 & 2 & 70 \end{vmatrix} \] Calculating \( D_z \): \[ D_z = 4(2 \cdot 70 - 45 \cdot 2) - 3(1 \cdot 70 - 6 \cdot 45) + 60(1 \cdot 2 - 6 \cdot 2) \] Calculating each term: 1. \( 4(140 - 90) = 4 \cdot 50 = 200 \) 2. \( -3(70 - 270) = -3 \cdot (-200) = 600 \) 3. \( 60(2 - 12) = 60 \cdot (-10) = -600 \) Thus, \[ D_z = 200 + 600 - 600 = 200 \] ### Step 4: Calculate Values of \( x, y, z \) Using Cramer's Rule: \[ x = \frac{D_x}{\text{det}(A)} = \frac{-85}{25} = -3.4 \] \[ y = \frac{D_y}{\text{det}(A)} = \frac{-160}{25} = -6.4 \] \[ z = \frac{D_z}{\text{det}(A)} = \frac{200}{25} = 8 \] ### Final Values: \[ x = -3.4, \quad y = -6.4, \quad z = 8 \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations with the help of determinants (by Cramer's rule): 3x+y+2z=3 , 2x-3y-z=-3 x+2y+z=4

The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=1 are

The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3 are

Solve by matrix method: x-y+2z=2,-2y-3z=-4,x-2y+4z=0

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

3x+4y+7z=4, 2x+y+ 3z= 3, x + 2y +3z =8.

Find the values of x, y and z from the following equations: (i) [4 3x5]=[y z1 5] (ii) [x+y3 5+z x y]=[6 2 5 8] (iii) [x+y+z x+z y+z]=[9 5 7]