Home
Class 12
MATHS
If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[...

If `A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)]` , find AB
Hence , solve the system of equation
x-2y=10, 2x+y+3z=8 and -2y+z=7.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the product of matrices A and B, and then solve the given system of equations. ### Step 1: Calculate the product of matrices A and B Given: \[ A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{pmatrix} \] \[ B = \begin{pmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{pmatrix} \] To find \( AB \), we will multiply each row of A by each column of B. 1. **First row of A with each column of B:** - First column: \( 1 \cdot 7 + (-2) \cdot (-2) + 0 \cdot (-4) = 7 + 4 + 0 = 11 \) - Second column: \( 1 \cdot 2 + (-2) \cdot 1 + 0 \cdot 2 = 2 - 2 + 0 = 0 \) - Third column: \( 1 \cdot (-6) + (-2) \cdot (-3) + 0 \cdot 5 = -6 + 6 + 0 = 0 \) So, the first row of \( AB \) is \( (11, 0, 0) \). 2. **Second row of A with each column of B:** - First column: \( 2 \cdot 7 + 1 \cdot (-2) + 3 \cdot (-4) = 14 - 2 - 12 = 0 \) - Second column: \( 2 \cdot 2 + 1 \cdot 1 + 3 \cdot 2 = 4 + 1 + 6 = 11 \) - Third column: \( 2 \cdot (-6) + 1 \cdot (-3) + 3 \cdot 5 = -12 - 3 + 15 = 0 \) So, the second row of \( AB \) is \( (0, 11, 0) \). 3. **Third row of A with each column of B:** - First column: \( 0 \cdot 7 + (-2) \cdot (-2) + 1 \cdot (-4) = 0 + 4 - 4 = 0 \) - Second column: \( 0 \cdot 2 + (-2) \cdot 1 + 1 \cdot 2 = 0 - 2 + 2 = 0 \) - Third column: \( 0 \cdot (-6) + (-2) \cdot (-3) + 1 \cdot 5 = 0 + 6 + 5 = 11 \) So, the third row of \( AB \) is \( (0, 0, 11) \). Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix} = 11I \] where \( I \) is the identity matrix. ### Step 2: Solve the system of equations The system of equations is: 1. \( x - 2y = 10 \) (Equation 1) 2. \( 2x + y + 3z = 8 \) (Equation 2) 3. \( -2y + z = 7 \) (Equation 3) We can express this in matrix form \( AX = B \), where: \[ A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \] To solve for \( X \), we can use the inverse of matrix \( A \): \[ X = A^{-1}B \] From the previous calculation, we found that: \[ AB = 11I \] Thus, we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{11}B \] Now, we can calculate \( X \): \[ X = A^{-1}B = \frac{1}{11}B \] Calculating \( B \): \[ B = \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \] Now, we multiply: \[ X = \frac{1}{11} \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} = \begin{pmatrix} \frac{10}{11} \\ \frac{8}{11} \\ \frac{7}{11} \end{pmatrix} \] ### Final Solution Thus, the solution to the system of equations is: \[ x = \frac{10}{11}, \quad y = \frac{8}{11}, \quad z = \frac{7}{11} \]
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (USING MATRICES ,SOLVE THE FOLLOWING SYSTEM OF EQUATIONS.)|2 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

Evaluate the product AB , where A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4 ),(-4,2,-4),(2,-1,5 )] hence solve the system of linear equations x-y=3 2x +3y +4z =17 y+2z =7

If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the system of linear equations x-2 y=10,2 x-y-z=8,-2 y+z=7.

If A=[[1,3,4],[2,1,2],[5,1,1]] , find A^(-1) . Hence solve the system of equations : x+3y+4z=8, 2x+y+2z=5 and 5x+y+z=7

If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1) . Hence, solve the system of equations : 3x+3y+2z=1 , x+2y=4 , 2x-3y-z=5

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is

Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}] . Find AB . Use this to solve that following system of equations : x-y=3 , 2x+3y+4z=17 , y+2z=7 .

If A=[{:(1,1,1),(1,0,2),(3,1,1):}] , find A^(-1) . Hence, solve the system of equations : x+y+z=6 , x+2z=7 , 3x+y+z=12

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

Consider the system of equation x+2y-3z=a , 2x+6y-11z=b , x-2y+7c then