Home
Class 12
MATHS
int(sqrt(cosx))sinxdx...

`int(sqrt(cosx))sinxdx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\cos x} \sin x \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Choose a substitution Let \( T = \cos x \). Then, the derivative of \( T \) with respect to \( x \) is: \[ \frac{dT}{dx} = -\sin x \implies \sin x \, dx = -dT \] ### Step 2: Substitute in the integral Now, we can rewrite the integral in terms of \( T \): \[ \int \sqrt{\cos x} \sin x \, dx = \int \sqrt{T} (-dT) = -\int \sqrt{T} \, dT \] ### Step 3: Rewrite the integral We can express \( \sqrt{T} \) as \( T^{1/2} \): \[ -\int T^{1/2} \, dT \] ### Step 4: Integrate Now, we can integrate \( T^{1/2} \): \[ -\left( \frac{T^{3/2}}{3/2} \right) + C = -\frac{2}{3} T^{3/2} + C \] ### Step 5: Substitute back for \( T \) Now, we substitute back \( T = \cos x \): \[ -\frac{2}{3} (\cos x)^{3/2} + C \] ### Final Result Thus, the integral \( \int \sqrt{\cos x} \sin x \, dx \) evaluates to: \[ -\frac{2}{3} (\cos x)^{3/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sqrt(cosx)sinxdx

int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

int(1+cosx)/sinxdx

int sqrt(1-cosx)dx

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

int (1+cosx)^(5) sinxdx

" (5) "int e^(cos x)sinxdx

Evaluate int(sqrt(tanx))/(sinx cosx)dx

int ((sqrt(tanx))/(sinx cosx))dx

int(sqrt(1+cosx)dx equals