Home
Class 12
MATHS
int(sin^(-1)x)/(sqrt(1-x^(2)))dx...

`int(sin^(-1)x)/(sqrt(1-x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we know that: \[ x = \sin t \] Differentiating both sides with respect to \( x \): \[ \frac{dx}{dt} = \cos t \quad \text{or} \quad dx = \cos t \, dt \] Also, we can express \( \sqrt{1 - x^2} \) in terms of \( t \): \[ \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t \] ### Step 2: Change of Variables Now, substituting \( x \) and \( dx \) in the integral: \[ \int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx = \int \frac{t}{\cos t} \cdot \cos t \, dt \] This simplifies to: \[ \int t \, dt \] ### Step 3: Integrate Now, we can integrate \( t \): \[ \int t \, dt = \frac{t^2}{2} + C \] ### Step 4: Back Substitution Now, we substitute back \( t = \sin^{-1} x \): \[ \frac{t^2}{2} + C = \frac{(\sin^{-1} x)^2}{2} + C \] ### Final Answer Thus, the integral is: \[ \int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx = \frac{(\sin^{-1} x)^2}{2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

I=int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Find :int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx

Find the value of int(tan sin^(-1)x)/(sqrt(1-x^(2)))dx

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx equals to :(A)-2(1-x^(2))^((1)/(2))-(sin^(-1)x)^((3)/(2))sqrt(1-x^(2))+c