Home
Class 12
MATHS
int(cos(logx))/(x)dx...

`int(cos(logx))/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos(\log x)}{x} \, dx \), we can use a substitution method. Here are the steps to solve the problem: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{x} \] This implies that: \[ dx = x \, dt = e^t \, dt \] Since \( x = e^t \), we can also express \( \frac{1}{x} \) as \( e^{-t} \). ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ \int \frac{\cos(\log x)}{x} \, dx = \int \cos(t) \cdot e^{-t} \, dt \] ### Step 3: Integrate The integral simplifies to: \[ \int \cos(t) \, dt \] The integral of \( \cos(t) \) is: \[ \sin(t) + C \] ### Step 4: Substitute Back Now we substitute back \( t = \log x \): \[ \sin(t) + C = \sin(\log x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\cos(\log x)}{x} \, dx = \sin(\log x) + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_1^3(cos(logx))/x dx

Evaluate : (i) int_(1)^(3)(cos(logx))/(x)dx (ii) int_(0)^(pi//2)sqrt(cos theta)sin^(3)theta d theta (iii) int_(0)^(pi//2)(cosx)/((1+sinx)(2+sinx))dx

Knowledge Check

  • int((logx)^n)/(x)dx=

    A
    `(1)/(n+1)(logx)^(n+1)+c`
    B
    `(1)/(n)(logx)^(n)+c`
    C
    `(1)/(n+1)logx^(n+1)+c`
    D
    `(1)/(n)logx^n+c`
  • int _(1)^(3) (cos (logx))/(x) dx is equal to

    A
    1
    B
    `cos (log 3)`
    C
    ` sin (log 3)`
    D
    `pi//4`
  • int(tan(logx))/(x)dx=?

    A
    `xtan(logx)+C`
    B
    `log|tanx|+C`
    C
    `log|cos(logx)|+C`
    D
    `-log|cos(logx)|+C`
  • Similar Questions

    Explore conceptually related problems

    int((logx)^(2))/(x)dx.

    Find int (sin(logx))/x dx

    int(tan(logx))/(x) dx =

    int cos(logx)dx=?

    int(logx)/(x+1)^2dx=