Home
Class 12
MATHS
int("cosec"^(2)(logx))/(x)dx...

`int("cosec"^(2)(logx))/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\csc^2(\log x)}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, the differential \( dt \) can be found using the derivative of \( \log x \): \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] Since \( x = e^t \), we can rewrite the integral in terms of \( t \). ### Step 2: Change of Variables Now, substituting \( x \) and \( dx \) into the integral: \[ \int \frac{\csc^2(\log x)}{x} \, dx = \int \csc^2(t) \, dt \] ### Step 3: Integrate The integral of \( \csc^2(t) \) is a standard integral: \[ \int \csc^2(t) \, dt = -\cot(t) + C \] ### Step 4: Back Substitute Now, we substitute back \( t = \log x \): \[ -\cot(t) + C = -\cot(\log x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\csc^2(\log x)}{x} \, dx = -\cot(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int (sec^(2)(logx ))/(x)dx

int(cosec^2(logx))/xdx

int"cosec"^(2)(2x+5)dx

int((logx)^n)/(x)dx=

Evaluate: int cosec^(2)((x)/(2))dx

int(logx)/(x)dx=?

int(logx)/(x^3)dx=

int(logx-1)/(x)dx

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx