Home
Class 12
MATHS
int((x+1)(x+logx)^(2))/(x)dx=?...

`int((x+1)(x+logx)^(2))/(x)dx=?`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(3)(x+logx)^(3)+C`

`I=int(1+(1)/(x))(x+logx)^(2)dx." Put"(x+logx)=t and(1+(1)/(x))dx=dt`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int((x+1)(x+logx)^2)/(2x)dx

int((x+1)(x+logx)^4)/(3x)dx=

int_(1)^(e)((logx)^(2))/(x)dx=?

int((x+1)(x+logx)^2)/xdx=

int(sqrt(1+(logx)^2))/(x)dx=

int(sqrt(16+(logx)^(2)))/(x)dx=?

int((logx)^(2))/(x)dx.

int((logx)^n)/(x)dx=

int (logx)^3/(x)dx

int(logx)/(x^(2))dx=?