Home
Class 12
MATHS
int(1)/(x^(2))cos((1)/(x))dx...

`int(1)/(x^(2))cos((1)/(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^2} \cos\left(\frac{1}{x}\right) dx \), we can use a substitution method. Here are the steps to solve the integral: ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = -\frac{1}{x^2} dx \quad \Rightarrow \quad dx = -x^2 dt = -\frac{1}{t^2} dt \] This substitution will help us simplify the integral. ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \int \frac{1}{x^2} \cos\left(\frac{1}{x}\right) dx = \int \frac{1}{x^2} \cos(t) \left(-\frac{1}{t^2} dt\right) \] Since \( \frac{1}{x^2} = t^2 \), we have: \[ = -\int \cos(t) dt \] ### Step 3: Integrate Now we can integrate: \[ -\int \cos(t) dt = -\sin(t) + C \] ### Step 4: Substitute Back Now we substitute back \( t = \frac{1}{x} \): \[ -\sin\left(\frac{1}{x}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x^2} \cos\left(\frac{1}{x}\right) dx = -\sin\left(\frac{1}{x}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(x^(2))cos^(2)((1)/(x))dx

int(1)/(x^(2)cos^(2)((1)/(x)))dx

int(1)/(x^(2)cos^(2)((1)/(x)))dx

int(1)/(x^(2)cos^(2)((1)/(x)))*dx

Evaluate: (i) int(1)/(x^(2))cos^(2)((1)/(x))dx (ii) int sec^(4)x tan xdx

Evaluate : int(1)/(x^(2)"cos"^(2)((1)/(x)))dx

Evaluate: int(1)/(sin x(2cos^(2)x-1))dx

Evaluate : (i) int((4-5 cosx)/(sin^(2)x))dx , (ii) int((1-cos2x)/(1+cos2x)) dx (iii) int (1)/(sin^(2)x cos^(2)x) dx , (iv) int(cos2x)/(cos^(2)x sin^(2) x) dx

int(1)/(x cos^(2)(1+log x))dx

int cos(1/x)(-(1)/(x^(2)))dx