Home
Class 12
MATHS
int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx...

`int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{1 - x^2} \sin^{-1}(x)} \, dx \), we will use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \sin^{-1}(x) \). Then, we know that: \[ x = \sin(t) \] Differentiating both sides with respect to \( x \): \[ dx = \cos(t) \, dt \] Also, from the identity \( \cos(t) = \sqrt{1 - \sin^2(t)} = \sqrt{1 - x^2} \). ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ \int \frac{1}{\sqrt{1 - x^2} \sin^{-1}(x)} \, dx = \int \frac{1}{\sqrt{1 - \sin^2(t)} \, t} \cos(t) \, dt \] Since \( \sqrt{1 - \sin^2(t)} = \cos(t) \), we can simplify the integral: \[ = \int \frac{\cos(t)}{\cos(t) \, t} \, dt = \int \frac{1}{t} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{t} \, dt \) is a standard integral: \[ = \ln |t| + C \] ### Step 4: Back Substitute Now, we substitute back \( t = \sin^{-1}(x) \): \[ = \ln |\sin^{-1}(x)| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\sqrt{1 - x^2} \sin^{-1}(x)} \, dx = \ln |\sin^{-1}(x)| + C \] ---

To solve the integral \( \int \frac{1}{\sqrt{1 - x^2} \sin^{-1}(x)} \, dx \), we will use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \sin^{-1}(x) \). Then, we know that: \[ x = \sin(t) \] Differentiating both sides with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(x+1)/(x(x+log x)dx) (ii) int(1)/(sqrt(1-x^(2))(2+3sin^(-1)x)dx)

int(1)/(sqrt(1-x^(2)){1+(sin^(-1)x)^(2)})dx

Evaluate: int(1)/(sqrt(1-x^(2))(sin^(-1)x)^(2))dx

Evaluate: ( i ) int(1+sin x)/(sqrt(x-cos x))dx (ii) int(1)/(sqrt(1-x^(2))(sin^(-1)x)^(2))dx

Evaluate: int(1)/(sqrt((1-x^(2)){9+(sin^(-1)x)^(2)}))dx

Evaluate: int(1)/(sqrt(1-x^(2))(2+3sin^(-1)x)))dx

Evaluate: int e^(x)(sqrt(1-x^(2))sin^(-1)x+1)/(sqrt(1-x^(2)))dx

int_(-1)^(1)(x)/(sqrt(1-x^(2)))*sin^(-1)(2x sqrt(1-x^(2)))dx is equal to

int(dx)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x/a)+C

Evaluate: int_(0)^(1)(1)/(sqrt(1-x^(2)))sin^(-1)(2x sqrt(1-x^(2)))dx