Home
Class 12
MATHS
int(sinx)/((1+cosx))dx...

`int(sinx)/((1+cosx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Identify the substitution Let \( u = 1 + \cos x \). ### Step 2: Differentiate the substitution Now, we differentiate \( u \): \[ du = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -du \] ### Step 3: Substitute in the integral Now we can substitute \( u \) and \( du \) into the integral: \[ \int \frac{\sin x}{1 + \cos x} \, dx = \int \frac{\sin x}{u} \, dx = \int \frac{-du}{u} \] ### Step 4: Integrate The integral \( \int \frac{-du}{u} \) can be solved as: \[ -\ln |u| + C \] ### Step 5: Substitute back for \( u \) Now we substitute back \( u = 1 + \cos x \): \[ -\ln |1 + \cos x| + C \] ### Step 6: Simplify the expression We can express this as: \[ \ln \left( \frac{1}{1 + \cos x} \right) + C \] ### Final Answer Thus, the final answer is: \[ -\ln(1 + \cos x) + C \quad \text{or} \quad \ln \left( \frac{1}{1 + \cos x} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(x-sinx)/(1-cosx)dx

int(x+sinx)/(1-cosx)dx=

int((x-sinx)/(1+cosx))dx

(i) int (cosx)/(1+cosx)dx , (ii) int (sinx)/((1-sinx))dx

int(sinx/(2+cosx))dx

int((1+sinx))/((1+cosx))dx=?

Evaluate : (i) int((1+cosx))/((1-cosx))dx (ii) int((1+sinx))/((1+cosx))dx

Evaluate : int((x-sinx)/(1-cosx))dx .