Home
Class 12
MATHS
int((1+tanx)/(1-tanx))dx...

`int((1+tanx)/(1-tanx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \tan x}{1 - \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression: \[ \frac{1 + \tan x}{1 - \tan x} \] This can be rewritten using the identity for tangent: \[ \frac{1 + \tan x}{1 - \tan x} = \tan\left(\frac{\pi}{4} + x\right) \] This identity helps us express the integrand in a more manageable form. ### Step 2: Rewrite the integral Now we can rewrite the integral as: \[ \int \tan\left(\frac{\pi}{4} + x\right) \, dx \] ### Step 3: Integrate The integral of \(\tan u\) is: \[ \int \tan u \, du = -\log|\cos u| + C \] Applying this to our integral: \[ \int \tan\left(\frac{\pi}{4} + x\right) \, dx = -\log|\cos\left(\frac{\pi}{4} + x\right)| + C \] ### Step 4: Final expression Thus, we can express the final result as: \[ -\log|\cos\left(\frac{\pi}{4} + x\right)| + C \] Alternatively, using the secant function: \[ \log|\sec\left(\frac{\pi}{4} + x\right)| + C \] ### Final Answer The integral evaluates to: \[ \int \frac{1 + \tan x}{1 - \tan x} \, dx = -\log|\cos\left(\frac{\pi}{4} + x\right)| + C \quad \text{or} \quad \log|\sec\left(\frac{\pi}{4} + x\right)| + C \]

To solve the integral \( \int \frac{1 + \tan x}{1 - \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression: \[ \frac{1 + \tan x}{1 - \tan x} \] This can be rewritten using the identity for tangent: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int((1+tan)/(1-tanx))^(2)dx=

int((1-tanx)/(1+tanx))^(2)dx=

int(tanx)/((1-sinx))dx

int(1+tan^(2)x)/(1+tanx)dx=

int(tanx)/(secx+tanx)dx=

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

int tanx dx

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

Evaluate int(tanx)/(secx+tanx)dx

int_(-pi//4)^0 (1+tanx)/(1-tanx) dx