Home
Class 12
MATHS
int((9x^(2)-4x+5))/((3x^(3)-2x^(2)+5x+1)...

`int((9x^(2)-4x+5))/((3x^(3)-2x^(2)+5x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{9x^2 - 4x + 5}{3x^3 - 2x^2 + 5x + 1} \, dx, \] we will use the method of integration by substitution. Here are the steps: ### Step 1: Identify the Denominator Let \[ T = 3x^3 - 2x^2 + 5x + 1. \] ### Step 2: Differentiate T Now, we need to find the derivative of T with respect to x: \[ \frac{dT}{dx} = \frac{d}{dx}(3x^3 - 2x^2 + 5x + 1) = 9x^2 - 4x + 5. \] ### Step 3: Rewrite the Integral We can rewrite the integral using the substitution \( T \): \[ \int \frac{9x^2 - 4x + 5}{3x^3 - 2x^2 + 5x + 1} \, dx = \int \frac{dT}{T}. \] ### Step 4: Integrate The integral of \(\frac{dT}{T}\) is: \[ \int \frac{dT}{T} = \ln |T| + C, \] where C is the constant of integration. ### Step 5: Substitute Back T Now, substitute back the expression for T: \[ \int \frac{9x^2 - 4x + 5}{3x^3 - 2x^2 + 5x + 1} \, dx = \ln |3x^3 - 2x^2 + 5x + 1| + C. \] ### Final Answer Thus, the final result is: \[ \ln |3x^3 - 2x^2 + 5x + 1| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x^(3)-5x)/((x^(2)-9)(x^(2)+1))dx

int_(1)^(3)(2x^(2)+5x)dx

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=

int(2x^(2)-3x-3)/((x-1)(x^(2)-2x+5))dx

int((2x^(2)+5x+9)dx)/((x+1)sqrt(x^(2)+x+1))

For integral int f(x- a/x)*(1+a/x^(2))dx , put x-a/x=t For integral int f(x+a/x)*(1-(a)/(x^(2)))dx , put x+a/x =t For integral int f(x^(2)-(a)/(x^(2)))*(x+(a)/(x^(3)))dx , put x^(2)-(a)/(x^(2))=t For integral int f(x^(2)+(a)/(x^(2)))*(x-(a)/(x^(3)))dx , put x^(2)+(a)/(x^(2))=t many integrands can be brought into above forms by suitable reductions or transformations . int(5x^(4)+4x^(5))/((x^(5)+x+1)^(2))dx

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

int(1)/((2-3x)^(2)(4-5x))dx=