Home
Class 12
MATHS
int(secx" cosec "x)/(log(tanx))dx...

`int(secx" cosec "x)/(log(tanx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sec x \csc x}{\log(\tan x)} \, dx \), we will follow a systematic approach using substitution. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \log(\tan x) \). - Then, we need to find \( dt \). - The derivative of \( t \) with respect to \( x \) is: \[ dt = \frac{1}{\tan x} \cdot \sec^2 x \, dx \] - Rearranging gives: \[ dx = \frac{\tan x}{\sec^2 x} dt \] 2. **Express \( \tan x \)**: We know that: \[ \tan x = \frac{\sin x}{\cos x} \] - Thus, we can express \( \frac{1}{\tan x} \) as: \[ \frac{1}{\tan x} = \frac{\cos x}{\sin x} = \csc x \cos x \] 3. **Substituting back**: Now, substituting \( dx \) in the integral: \[ \int \frac{\sec x \csc x}{\log(\tan x)} \, dx = \int \frac{\sec x \cdot \csc x \cdot \frac{\tan x}{\sec^2 x}}{\log(\tan x)} \, dt \] - Simplifying this gives: \[ = \int \frac{\sec x \cdot \csc x \cdot \frac{\sin x}{\cos x}}{\log(\tan x)} dt \] - Since \( \sec x = \frac{1}{\cos x} \) and \( \csc x = \frac{1}{\sin x} \), we can simplify further: \[ = \int \frac{1}{\log(\tan x)} dt \] 4. **Integrating**: The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} dt = \log |t| + C \] - Substituting back \( t = \log(\tan x) \): \[ = \log |\log(\tan x)| + C \] ### Final Answer: Thus, the final result of the integral is: \[ \int \frac{\sec x \csc x}{\log(\tan x)} \, dx = \log |\log(\tan x)| + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(secx cosec x)/(log(cotx))dx=

Evaluate: int(sec x csc x)/(log(tan x))dx

int(secxcosecx)/(log(tanx))dx=

int((secx+ "cosec x")(secx- "cosec x"))/(tanx +cotx)dx=

int(secx)/(log(secx+tanx))dx=

int(secx."cosec"x)/(2cotx-secx"cosec x")dx di equal to

intsecxlog(secx+tanx)dx

int sec x log(secx+tanx)dx=