Home
Class 12
MATHS
int(1-x)sqrt(1+x)dx...

`int(1-x)sqrt(1+x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (1-x) \sqrt{1+x} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + x \). Then, the differential \( dx \) becomes \( dt \). We also need to express \( 1 - x \) in terms of \( t \): \[ 1 - x = 1 - (t - 1) = 2 - t \] Now, substitute these into the integral: \[ \int (1-x) \sqrt{1+x} \, dx = \int (2 - t) \sqrt{t} \, dt \] ### Step 2: Expand the Integral Now we can expand the integrand: \[ \int (2 - t) \sqrt{t} \, dt = \int (2\sqrt{t} - t\sqrt{t}) \, dt = \int (2t^{1/2} - t^{3/2}) \, dt \] ### Step 3: Integrate Each Term Now, we can integrate each term separately: \[ \int 2t^{1/2} \, dt - \int t^{3/2} \, dt \] Using the power rule for integration: \[ \int t^{n} \, dt = \frac{t^{n+1}}{n+1} + C \] we get: \[ = 2 \cdot \frac{t^{3/2}}{3/2} - \frac{t^{5/2}}{5/2} = \frac{4}{3} t^{3/2} - \frac{2}{5} t^{5/2} + C \] ### Step 4: Substitute Back Now we substitute back \( t = 1 + x \): \[ = \frac{4}{3} (1+x)^{3/2} - \frac{2}{5} (1+x)^{5/2} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int (1-x) \sqrt{1+x} \, dx = \frac{4}{3} (1+x)^{3/2} - \frac{2}{5} (1+x)^{5/2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(x-1)sqrt(x+1)dx

Evaluate int(sqrt(1-x))/(sqrt(1+x))dx

The value of int log(sqrt(1-x)+sqrt(1+x))dx, is equal to

int ln(sqrt(1+x)+sqrt(1-x))dx

" (2) "int(x-1)sqrt(x+1)dx

int_0^1 x/sqrt(1+x)dx

int(2x+1)sqrt(x+1)dx=

Evaluate int(sin^(-1)x)/(sqrt(1-x))dx

int(sin^(-1)x)/(sqrt(1+x))dx