Home
Class 12
MATHS
int(cos2x)/((sinx+cosx)^(2))dx is equal ...

`int(cos2x)/((sinx+cosx)^(2))dx` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`log|sinx+cosx|+C`

`I=int((cos^(2)x-sin^(2)x))/((sinx+cosx)^(2))dx=int((cosx-sinx))/((sinx+cosx))dx`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal (A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

int(cos2x)/(sinx+cosx)dx=

int(x^(2))/((x sinx+cosx)^(2))dx is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(sinx-cosx)^(4)(sinx+cosx)dx is equal to

int(cosx-sinx)/(( sin x+ cos x)^(2))dx

int(sinx-cosx)^(2)dx=