Home
Class 12
MATHS
int(dx)/((x-sqrt(x)))...

`int(dx)/((x-sqrt(x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{x - \sqrt{x}} \), we will follow these steps: ### Step 1: Factor out \( \sqrt{x} \) We start by factoring \( \sqrt{x} \) from the denominator: \[ x - \sqrt{x} = \sqrt{x}(\sqrt{x} - 1) \] Thus, we can rewrite the integral as: \[ \int \frac{dx}{\sqrt{x}(\sqrt{x} - 1)} \] ### Step 2: Substitute \( u = \sqrt{x} - 1 \) Next, we make the substitution \( u = \sqrt{x} - 1 \). Therefore, we have: \[ \sqrt{x} = u + 1 \quad \text{and} \quad x = (u + 1)^2 \] Now, we differentiate \( x \) with respect to \( u \): \[ dx = 2(u + 1) du \] ### Step 3: Rewrite the integral in terms of \( u \) Substituting \( \sqrt{x} \) and \( dx \) into the integral, we get: \[ \int \frac{2(u + 1) du}{(u + 1)(u)} = \int \frac{2 du}{u} \] ### Step 4: Integrate Now we can integrate: \[ \int \frac{2 du}{u} = 2 \ln |u| + C \] ### Step 5: Substitute back for \( u \) We substitute back \( u = \sqrt{x} - 1 \): \[ 2 \ln |\sqrt{x} - 1| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{x - \sqrt{x}} = 2 \ln |\sqrt{x} - 1| + C \] ---

To solve the integral \( \int \frac{dx}{x - \sqrt{x}} \), we will follow these steps: ### Step 1: Factor out \( \sqrt{x} \) We start by factoring \( \sqrt{x} \) from the denominator: \[ x - \sqrt{x} = \sqrt{x}(\sqrt{x} - 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x+2sqrt(x))

int(dx)/((x-1)sqrt(x+1))=

int(dx)/((x-1)sqrt(x+2))

int (dx)/((x+1)sqrt(x))=.....

int(dx)/((x-2)sqrt(x+1))

Evaluate: int(dx)/((x-4)sqrt(x+5))

" (d) "int(dx)/(x^2 sqrt(x))

int(dx)/(sqrt(x)(1+x))

Find int(dx)/(sqrt(x)+x)

int(dx)/((x+1)sqrt(x-1))=