Home
Class 12
MATHS
((1+sin2x)/(x+sin^(2)x))dx...

`((1+sin2x)/(x+sin^(2)x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1 + \sin 2x}{x + \sin^2 x} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1 + \sin 2x}{x + \sin^2 x} \, dx \] ### Step 2: Use the Identity for \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the integral as: \[ \int \frac{1 + 2 \sin x \cos x}{x + \sin^2 x} \, dx \] ### Step 3: Substitute \(t = x + \sin^2 x\) Let’s make the substitution: \[ t = x + \sin^2 x \] Now, we need to differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = 1 + 2 \sin x \cos x = 1 + \sin 2x \] This implies: \[ dt = (1 + \sin 2x) \, dx \] From this, we can express \(dx\) in terms of \(dt\): \[ dx = \frac{dt}{1 + \sin 2x} \] ### Step 4: Substitute in the Integral Now, substituting \(t\) and \(dx\) into the integral: \[ \int \frac{1 + \sin 2x}{t} \cdot \frac{dt}{1 + \sin 2x} \] This simplifies to: \[ \int \frac{dt}{t} \] ### Step 5: Integrate The integral of \(\frac{1}{t}\) is: \[ \ln |t| + C \] ### Step 6: Substitute Back for \(t\) Now, substituting back for \(t\): \[ \ln |x + \sin^2 x| + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{1 + \sin 2x}{x + \sin^2 x} \, dx = \ln |x + \sin^2 x| + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^( pi)((1-x sin2x)e^(cos^(2)x)+(1+x sin2x)e^(sin^(2)x)) dx is equal to

int(1-sin^(2)x)/(sin^(2)x)dx

int(sin2x)/(a+b sin^(2)x)dx

Evaluate: int(1+sin2x)/(x+sin^2x)dx

int(sin2x)/(1+sin^(2)x)dx=

int(sin2x )/(1+sin^(2)x)dx

int_(0)^( pi//2)sqrt((1-sin2x)/(1+sin2x))dx

Evaluate: int sqrt((1-sin2x)/(1+sin2x))dx

I= int ( sin 2 x)/( 1+ sin^(2) x) dx .

int(sin^(2)x)/(1+sin^(2)x)dx