Home
Class 12
MATHS
int((sinx+cosx))/(sqrt(sin2x))dx...

`int((sinx+cosx))/(sqrt(sin2x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} \, dx \] Recall that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the integral as: \[ I = \int \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} \, dx \] ### Step 2: Simplify the Denominator The square root in the denominator can be simplified: \[ \sqrt{2 \sin x \cos x} = \sqrt{2} \sqrt{\sin x \cos x} \] Thus, we have: \[ I = \int \frac{\sin x + \cos x}{\sqrt{2} \sqrt{\sin x \cos x}} \, dx \] This simplifies to: \[ I = \frac{1}{\sqrt{2}} \int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} \, dx \] ### Step 3: Use Trigonometric Identities We can express \( \sin x + \cos x \) in terms of \( \sin x \) and \( \cos x \): \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Now, substituting this back into the integral: \[ I = \frac{1}{\sqrt{2}} \int \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{\sqrt{\sin x \cos x}} \, dx \] This simplifies to: \[ I = \int \frac{\sin\left(x + \frac{\pi}{4}\right)}{\sqrt{\sin x \cos x}} \, dx \] ### Step 4: Substitute \( t = \sin x - \cos x \) Let \( t = \sin x - \cos x \). Then, differentiating gives: \[ dt = (\cos x + \sin x) \, dx \] Thus, we can express \( dx \) as: \[ dx = \frac{dt}{\cos x + \sin x} \] ### Step 5: Substitute Back into the Integral Now substituting \( t \) into the integral: \[ I = \int \frac{dt}{\sqrt{1 - t^2}} \] This integral is known and evaluates to: \[ I = \sin^{-1}(t) + C \] ### Step 6: Substitute Back for \( t \) Substituting back for \( t \): \[ I = \sin^{-1}(\sin x - \cos x) + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \sin^{-1}(\sin x - \cos x) + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(sinx+cosx)/(sqrt(1+sin2x))dx

Evaluate: int(sinx+cosx)/(sqrt(1+sin2x))\ dx

Write a value of int(sinx-cosx)/(sqrt(1+sin2x))\ dx

Evaluate int((sinx+cosx)dx)/(sqrt(3+sin2x)).

I=int (sinx+cosx)/sqrt(1-sin2x) dx

int(sinx-cosx)/(sqrt(sin2x-(1)/(2)))dx=

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

int_(0)^((pi)/2)(sinx+cosx)/(sqrt(1+sin2x))dx=