Home
Class 12
MATHS
int(logx)/(x^(2))dx=?...

`int(logx)/(x^(2))dx=?`

A

`-(1)/(x)(logx+1)+C`

B

`(1)/(x)(logx-1)+C`

C

`(1)/(x)(logx+1)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`int(logx)/(x^(2))dx=intunderset(I)((logx))*underset(II)((1)/(x^(2)))dx`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(logx)/(x+1)^2dx=

int(logx)/(x^3)dx=

int((logx)^n)/(x)dx=

The value of int(logx)/(x+1)^(2)dx is

int (logx)^3/(x)dx

int(tan(logx))/(x)dx=?

int(logx)/(x)dx=?

int(logx)^(2)dx=?

int(logx-1)/(x)dx