Home
Class 12
MATHS
int(logx)^(2)dx=?...

`int(logx)^(2)dx=?`

A

`(2logx)/(x)+C`

B

`(1)/(3)(logx)^(3)+C`

C

`x(logx)^(2)-2xlogx+2x+C`

D

`x(logx)^(2)-2xlogx-2x+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I={underset(I)((logx)^(2))*underset(II)(1)}dx=(logx)^(2)*x-int(2logx)/(x)*xdx`
`=x(logx)^(2)-2intlogxdx=x(logx)^(2)-2[x(logx-1)]+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(logx)/(x)dx=?

int(logx)/(x^(2))dx=?

Question Stimulus :- int1/(x(logx)^2)dx=?

int (logx)^3/(x)dx

int(logx)/(x^3)dx=

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int cos(logx)dx=?

int(logx-1)/(x)dx

int((logx)^(2))/(x)dx.