Home
Class 12
MATHS
int cos(logx)dx=?...

`int cos(logx)dx=?`

A

`(x)/(2)[cos(logx)-sin(logx)]+C`

B

`(x)/(2)[cos(logx)+sin(logx)]+C`

C

`2x[cos(logx)+sin(logx)]+C`

D

`2x[cos(logx)-sin(logx)]+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos(\log x) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we can express \( x \) in terms of \( t \): \[ x = e^t \] Now, we need to find \( dx \): \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we have: \[ \int \cos(\log x) \, dx = \int \cos(t) \cdot e^t \, dt \] ### Step 3: Integration by Parts Now we will use integration by parts. Let: - \( u = e^t \) (first function) - \( dv = \cos(t) \, dt \) (second function) Then we need to find \( du \) and \( v \): \[ du = e^t \, dt, \quad v = \sin(t) \] Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int e^t \cos(t) \, dt = e^t \sin(t) - \int \sin(t) e^t \, dt \] ### Step 4: Apply Integration by Parts Again Now we need to integrate \( \int \sin(t) e^t \, dt \) using integration by parts again. Let: - \( u = e^t \) - \( dv = \sin(t) \, dt \) Then: \[ du = e^t \, dt, \quad v = -\cos(t) \] So, \[ \int e^t \sin(t) \, dt = -e^t \cos(t) - \int -\cos(t) e^t \, dt \] \[ = -e^t \cos(t) + \int e^t \cos(t) \, dt \] ### Step 5: Combine the Results Now, substituting back into our equation: \[ \int e^t \cos(t) \, dt = e^t \sin(t) - \left( -e^t \cos(t) + \int e^t \cos(t) \, dt \right) \] \[ = e^t \sin(t) + e^t \cos(t) - \int e^t \cos(t) \, dt \] Let \( I = \int e^t \cos(t) \, dt \). Then we have: \[ I = e^t \sin(t) + e^t \cos(t) - I \] \[ 2I = e^t (\sin(t) + \cos(t)) \] \[ I = \frac{e^t}{2} (\sin(t) + \cos(t)) \] ### Step 6: Substitute Back Now substituting back \( t = \log x \): \[ I = \frac{e^{\log x}}{2} (\sin(\log x) + \cos(\log x)) = \frac{x}{2} (\sin(\log x) + \cos(\log x)) \] ### Step 7: Final Answer Thus, the final answer for the integral is: \[ \int \cos(\log x) \, dx = \frac{x}{2} (\sin(\log x) + \cos(\log x)) + C \]

To solve the integral \( \int \cos(\log x) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we can express \( x \) in terms of \( t \): \[ x = e^t \] Now, we need to find \( dx \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(logx)/(x)dx=?

int(logx)^(2)dx=?

int 2^(logx) dx = ?

Evaluate int sin(logx)dx .

Evaluate the following integrals: int e^(-logx)dx

(i) int e^(3logx)dx

int(cos(logx))/(x)dx

int (logx)^3/(x)dx

int(logx)/(x^3)dx=