Home
Class 12
MATHS
int{(1)/((logx))-(1)/((logx)^(2))}dx=?...

`int{(1)/((logx))-(1)/((logx)^(2))}dx=?`

A

x log x+C

B

`(x)/(logx)+C`

C

`x+(1)/(logx)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int{(1)/underset(I)((logx))*underset(II)(1)}dx-int(1)/((logx)^(2))dx`
`=(1)/((logx))*x-int(-1)*(1)/((logx)^(2))*(1)/(x)*xdx-int(1)/((logx)^(2))dx+C`
`=(x)/((logx))+C`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int(logx)^(2)dx=?

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(1)/(x(logx))dx=?

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

int1/(x(1-logx)^(2))dx=