Home
Class 12
MATHS
int(x2^(x))dx=?...

`int(x2^(x))dx=?`

A

`(2^(x))/((log2))(x+log2)+C`

B

`(2^(x))/((log2))(xlog2-1)+C`

C

`(x*2^(x))/((log2))+(2^(x))/((log2)^(2))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \cdot 2^x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x \) (first function) - \( dv = 2^x \, dx \) (second function) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = dx \] - Integrate \( dv \): \[ v = \int 2^x \, dx = \frac{2^x}{\ln(2)} \] ### Step 3: Apply the integration by parts formula Substituting into the integration by parts formula: \[ \int x \cdot 2^x \, dx = uv - \int v \, du \] This gives us: \[ \int x \cdot 2^x \, dx = x \cdot \frac{2^x}{\ln(2)} - \int \frac{2^x}{\ln(2)} \, dx \] ### Step 4: Simplify the integral Now we need to evaluate the integral \( \int \frac{2^x}{\ln(2)} \, dx \): \[ \int \frac{2^x}{\ln(2)} \, dx = \frac{1}{\ln(2)} \int 2^x \, dx = \frac{1}{\ln(2)} \cdot \frac{2^x}{\ln(2)} = \frac{2^x}{\ln(2)^2} \] ### Step 5: Substitute back into the equation Now substitute this result back into our equation: \[ \int x \cdot 2^x \, dx = x \cdot \frac{2^x}{\ln(2)} - \frac{2^x}{\ln(2)^2} \] ### Step 6: Factor out common terms Factoring out \( \frac{2^x}{\ln(2)^2} \): \[ \int x \cdot 2^x \, dx = \frac{2^x}{\ln(2)^2} \left( x \ln(2) - 1 \right) + C \] ### Final Answer Thus, the final result is: \[ \int x \cdot 2^x \, dx = \frac{2^x}{\ln(2)^2} \left( x \ln(2) - 1 \right) + C \]

To solve the integral \( \int x \cdot 2^x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(x+x^(2))dx

int x*2^(-2x)dx

int(sin x+2^(x))dx

int(x-2)/(x+3)dx=

find value int(x^(2)+x)dx

int x^(2)a^(x)dx

" "int x*2^(-2x)dx

int x^(2)e^(x)dx

int(x)/(2x+3)dx=

int x*e^(-2x)dx