Home
Class 12
MATHS
intxcot^(2)xdx=?...

`intxcot^(2)xdx=?`

A

`-xcotx+(x^(2))/(2)+log|sinx|+C`

B

`-xcotx-(x^(2))/(2)+log|sinx|+C`

C

`-xcotx+(x^(2))/(2)-log|sinx|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=x("cosec"^(2)x-1)dx=intunderset(I)(x)underset(II)("cosec"^(2))xdx-intxdx`
`=x(-cotx)-int(-cotx)dx-(x^(2))/(2)+C=-xcosx+log|sinx|-(x^(2))/(2)+C`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intxcos^(2)xdx=?

int cot^(2)xdx

intxsec^(2)xdx=?

int xcos^(2)xdx=

int cos^(2)xdx

int cos^(2)xdx

int x cos^(2)xdx

intsinx cos^(2)xdx=?

int sec^(2)xdx=

Evaluate the following integrals: intxcot^(-1)xdx