Home
Class 12
MATHS
intsinsqrt(x)dx=?...

`intsinsqrt(x)dx=?`

A

`-sqrt(x)cossqrt(x)+C`

B

`-sqrt(x)cossqrt(x)-2sinsqrt(x)-C`

C

`-2sqrt(x)cossqrt(x)+2sinsqrt(x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin(\sqrt{x}) \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Now, we differentiate both sides with respect to \( x \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \int \sin(\sqrt{x}) \, dx = \int \sin(t) \cdot 2t \, dt \] This simplifies to: \[ 2 \int t \sin(t) \, dt \] ### Step 3: Integration by Parts We will use integration by parts to solve \( \int t \sin(t) \, dt \). Let: - \( u = t \) (thus, \( du = dt \)) - \( dv = \sin(t) \, dt \) (thus, \( v = -\cos(t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int t \sin(t) \, dt = -t \cos(t) - \int -\cos(t) \, dt \] This simplifies to: \[ -t \cos(t) + \int \cos(t) \, dt \] The integral of \( \cos(t) \) is \( \sin(t) \), so we have: \[ -t \cos(t) + \sin(t) \] ### Step 4: Substitute Back Now, substituting back for \( t \): \[ \int t \sin(t) \, dt = -\sqrt{x} \cos(\sqrt{x}) + \sin(\sqrt{x}) + C \] Thus, multiplying by 2 (from Step 2): \[ 2 \int t \sin(t) \, dt = -2\sqrt{x} \cos(\sqrt{x}) + 2\sin(\sqrt{x}) + C \] ### Final Answer The final result for the integral \( \int \sin(\sqrt{x}) \, dx \) is: \[ \int \sin(\sqrt{x}) \, dx = -2\sqrt{x} \cos(\sqrt{x}) + 2\sin(\sqrt{x}) + C \]

To solve the integral \( \int \sin(\sqrt{x}) \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Now, we differentiate both sides with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int x^(x)dx

intsinsqrt(x)/sqrt(x)dx

intsqrt((a-x)/(a+x))dx-int sqrt((a+x)/(a-x))dx=

intsqrt((a-x)/(x))dx=

intsqrt((a+x)/(x-a))dx

intsqrt((a-x)/(a+x))dx

int x^(2)sqrt(x+2)dx(ii)int(x^(2))/(sqrt(x-1))dx

int(x)/(a+x)dx

int(x)/(x+a)dx

int(dx)/(xsqrt(1-x^(3)))dx=