Home
Class 12
MATHS
inte^(sinx)sin2x dx...

`inte^(sinx)sin2x dx`

A

`(2sinx)e^(sinx)+C`

B

`(2cosx)e^(sinx)+C`

C

`2e^(sinx)(sinx+1)+C`

D

`2e^(sinx)(sinx-1)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

`I=2inte^(sinx)sinxcosxdx=2intunderset(I)(t)underset(II)e^(t)"dt, where "sinx=t`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(sinx)/(sin 2x)dx

Evaluate the following integrals: int (sinx)/(sin2x)dx

int (sin2x)/(sinx )dx = ?

int(sinx)/(1+sin x) dx

Evaluate : (i) int(sin4x)/(cos2x)dx (ii) int(sin4x)/(sinx)dx

int(sinx)/(1-sin^(2)x)dx=

If f(x) = int(sinx-sin2x)/(x^(3)) dx, where xne0 , then Limit_(xto0) f^(')(x) has the value

int(sin(x-a))/(sinx)dx

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

(2.) int(sin x)/(sinx+cos x)dx