Home
Class 12
MATHS
intsin^(-1)((2x)/(1+x^(2)))dx=?...

`intsin^(-1)((2x)/(1+x^(2)))dx=?`

A

`2xtan^(-1)x+log|1+x^(2)|+C`

B

`2xtan^(-1)x-log|1+x^(2)|+C`

C

`2xsin^(-1)x+log|1+x^(2)|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Put `x=tant anddx=sec^(2)tdt`.
`:." "I=intsin^(-1)((2tant)/(1+tan^(2)t))sec^(2)tdt=sin^(-1)(sin2t)sec^(2)tdt`
`=2intunderset(I)(t)underset(II)(sec^(2))tdt`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intsin(tan^-1x)/(1+x^2)dx

int(1-2x)/(1+x-x^(2))dx

intsin^-1x/(1-x^2)^(3/2)dx

intsin^(-1)(3x-4x^(3))dx=?

If intsin^(-1)(sqrt(x)/sqrt(x+1))dx=A(x)tan^(-1)sqrt(x)+B(x)+C then A(x) and B(x) will be

intsin^(5) x dx

Evaluate: int_(1)^(2)(1)/((x+1)(x+2))dx( ii) int_(1)^(2)(1)/(x(1+x^(2)))dx

int_(-1)^(1)(x^(2)+x)/(x^(2)+1)dx=

int(x-1)/(1-2x+x^(2))dx=

"int(2x+1)/((x+1)(x+2)^(2))dx