Home
Class 12
MATHS
inttan^(-1)sqrt((1-x)/(1+x))dx=...

`inttan^(-1)sqrt((1-x)/(1+x))dx=`

A

`(1)/(2)x(cos^(-1)x)+(1)/(2)sqrt(1-x^(2))+C`

B

`(1)/(2)x(sin^(-1)x)+(1)/(2)sqrt(1-x^(2))+C`

C

`(1)/(2)x(cos^(-1)x)-(1)/(2)sqrt(1-x^(2))+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Put x=cos t and dx =-sin t dt. Then,
`I=inttan^(-1)sqrt((1-cost)/(1+cost))*(-sint)dt=inttan^(-1)sqrt((2sin^(2)((t)/(2)))/(2cos^(2)((t)/(2))))(-sint)dt`
`=-inttan^(-1)("tan"(t)/(2))(-sint)dt=(1)/(2)intunderset(I)(t)underset(II)((sint))dt`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

inttan^-1sqrt((1-x)/(1+x))dx

Evaluate: inttan^-1sqrt((1-x)/(1+x))dx

int_(-1)^(1)sqrt((1-x)/(1+x))dx=

int sqrt((1-x)/(1+x))dx

inttan^(- 1)sqrt((1-sinx)/(1+sinx))dx ,-pi/2

Evaluate the following integrals: inttan^(-1)((2x)/(1-x^(2)))dx

int(1)/(sqrt(x)(1+x))dx

inttan^(-1){sqrt((1-cos2x)/(1+cos2x))} dx = ?

Evaluate: inttan^(-1){sqrt(((1-sinx)/(1+sinx)))} dx , -pi//2