Home
Class 12
MATHS
intsinxlog(cosx)dx=?...

`intsinxlog(cosx)dx=?`

A

`cosxlog(cosx)-cosx+C`

B

`-cosxlog(cosx)+cosx+C`

C

`cosxlog(cosx)+cosx+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Put cos x=t and - sin x dx=dt.
`:." "I=-intlogtdt=-int(underset(I)(logt)*underset(II)1)dt=-{:[(logt)t-int(1)/(t)*tdt]:}`
`=-t(logt)+t+C=-cost[log(cost)]+cosx+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intsinxcos(cosx)dx

intsinxsin(cosx)dx

intx(cosx)dx

int(sinx*cosx)dx

int(sinx/(2+cosx))dx

intcosx/(1+cosx)dx

int(1)/(sinx-cosx)dx=

intsinxlog(secx+tanx)dx=

What is intsinxlog(tanx)dx equal to ?