Home
Class 12
MATHS
intcos^(-1)((1-x^(2))/(1+x^(2)))dx=?...

`intcos^(-1)((1-x^(2))/(1+x^(2)))dx=?`

A

`2xtan^(-1)x+log(1+x^(2))+C`

B

`-2xtan^(-1)x-2log(1+x^(2))+C`

C

`2xtan^(-1)x-log(1+x^(2))+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Put `x=tant anddx=sec^(2)tdt`.
Then, `I=intcos^(-1)((1-tan^(2)t)/(1+tan^(2)t))sec^(2)tdt=intcos^(-1)(cos2t)sec^(2)tdt`
`=2intunderset(I)(t)underset(II)(sec^(2))tdt`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)(1-x^(2))/(1+x^(2))dx is

intcos^(-1)((1-tan^(2)x)/(1+tan^(2)x)) dx = ?

intcos^-1(1/x)dx

int_(-1)^(1)(x^(2))/(1+x^(2))dx=

intcos^-1((1-tan^2x)/(1+tan^2x))dx

int_(-1)^(1)(x^(2)+x)/(x^(2)+1)dx=

int_(-1)^(1)(x^(2)-1)/(x^(2)+1)dx=

int_(-1)^(1)e^(tan^(-1)x)((1+x+x^(2))/(1+x^(2)))dx

int_(-1) ^(1) x^(2) /(1+x^(2)) dx =

intcos(2cot^(-1)sqrt((1-x)/(1+x)))dx=