Home
Class 12
MATHS
intx.tan^-1xdx...

`intx.tan^-1xdx`

A

`(1)/(2)(x^(2)+1)tan^(-1)x-(1)/(2)x+C`

B

`(1)/(2)(x^(2)-1)tan^(-1)x-(1)/(2)x+C`

C

`(1)/(2)(x^(2)+1)tan^(-1)x+(1)/(2)x+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=intunderset(II)(x)underset(I)(tan^(-1))xdx=(tan^(-1)x)*(x^(2))/(2)-(1)/((1+x^(2)))*(x^(2))/(2)dx`
`=(1)/(2)x^(2)(tan^(-1))-(1)/(2)int(1-(1)/(1+x^(2)))dx=(1)/(2)x^(2)tan^(-1)x-(1)/(2)x+(1)/(2)tan^(-1)x+C`
`=(1)/(2)(x^(2)+1)tan^(-1)x-(1)/(2)x+C`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intx^3.tan^-1xdx

Evaluate intxtan^-1xdx

Evaluate : intxtan^(-1)xdx

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of A ?

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of B ?

int tan^(-1)xdx

intxtan^2xdx=

Evaluate: int tan^(-1)xdx

int x*tan^(-1)xdx