Home
Class 12
MATHS
Evaluate int sin(logx)dx....

Evaluate `int sin(logx)dx`.

A

`(1)/(2)xsinlogx+(1)/(2)xcos(logx)+C`

B

`(1)/(2)xsinlogx-(1)/(2)xcos(logx)+C`

C

`-(1)/(2)xsin(logx)+(1)/(2)xcos(logx)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int{sinunderset(I)((logx))*underset(II)1}dx=(sinlogx)x-int(cos(logx))/(x)*xdx`
`=xsin(logx)-int{cosunderset(I)((logx))*underset(II)(1)}dx`
`=xsin(logx)-cos(logx)*x+int(-sin(logx))/(x)*xdx`
`:." "2I=xsin(logx)-xcos(logx)-C`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

.Evaluate: int sin(x)dx

int cos(logx)dx=?

Evaluate int logx dx

Evaluate : int(logx)^(2)dx .

int logx dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate: int{tan(logx)+sec^2(logx)}\ dx

Evaluate: int[tan(logx)+sec^2(logx)]dx

Evaluate int dx/(x{1+(logx)^2}