Home
Class 12
MATHS
inte^(x){(1)/(x)-(1)/(x^(2))}dx=?...

`inte^(x){(1)/(x)-(1)/(x^(2))}dx=?`

A

`e^(x){logx+(1)/(x)}+C`

B

`xe^(x)-e^(x)+C`

C

`e^(x)*(1)/(x)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int e^(x){f(x)+f'(x)}dx," where "f(x)=(1)/(x)`
`e^(x)f(x)+C=e^(x)*(1)/(x)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int e^(x)((1)/(x)-(1)/(x^(2)))dx

int e^(x)((1)/(x)-(1)/(x^(2)))dx

" *10."int e^(x)((1)/(x)-(1)/(x^(2)))dx

Evaluate: int e^(x)((1)/(x)-(1)/(x^(2)))dx

Write a value of int e^(x)((1)/(x)-(1)/(x^(2)))dx

int e^(x){((1)/(x))-((1)/(x^(2)))}dx

Evaluate: (i) int e^(x)((1)/(x)-(1)/(x^(2)))dx (ii) int e^(x)(sin x+cos x)dx

int[e^(x)(1/x-1/(x^(2)))]dx

The value of inte^(2x)(1/x-1/(2x^(2)))dx is

int(e^(x)(1-x)^(2))/((1+x)^(2))dx