Home
Class 12
MATHS
inte^(x)((1)/(x^(2))-(2)/(x^(3)))dx=?...

`inte^(x)((1)/(x^(2))-(2)/(x^(3)))dx=?`

A

`(-e^(x))/(x^(2))+C`

B

`(e^(x))/(x^(2))+C`

C

`e^(x)((-1)/(x)+(1)/(x^(2)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx \), we will use substitution and integration techniques. Let's go through the steps. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx \] This can be rewritten as: \[ I = \int e^x \left( \frac{1}{x^2} \right) dx - 2 \int e^x \left( \frac{1}{x^3} \right) dx \] ### Step 2: Use Substitution Let’s use the substitution: \[ t = e^x \cdot \frac{1}{x^2} \] Now, we need to differentiate \( t \) with respect to \( x \) to find \( dt \). ### Step 3: Differentiate Using the Product Rule Using the product rule, we have: \[ \frac{dt}{dx} = \frac{d}{dx} \left( e^x \cdot \frac{1}{x^2} \right) = e^x \cdot \frac{d}{dx} \left( \frac{1}{x^2} \right) + \frac{1}{x^2} \cdot \frac{d}{dx} \left( e^x \right) \] Calculating the derivatives: \[ \frac{d}{dx} \left( \frac{1}{x^2} \right) = -\frac{2}{x^3} \] and \[ \frac{d}{dx} \left( e^x \right) = e^x \] Thus, \[ \frac{dt}{dx} = e^x \left( -\frac{2}{x^3} \right) + e^x \cdot \frac{1}{x^2} = e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) \] ### Step 4: Rearranging for \( dt \) Now, we can express \( dt \) as: \[ dt = e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx \] This means: \[ I = \int dt \] ### Step 5: Integrate Integrating both sides gives: \[ I = t + C \] ### Step 6: Substitute Back Recall that we defined \( t = e^x \cdot \frac{1}{x^2} \), so: \[ I = e^x \cdot \frac{1}{x^2} + C \] ### Final Answer Thus, the final result is: \[ I = \frac{e^x}{x^2} + C \]

To solve the integral \( I = \int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx \), we will use substitution and integration techniques. Let's go through the steps. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int e^(x)((1)/(x^(2))-(2)/(x^(3)))dx

Evaluate: int e^(x)((1)/(x^(2))-(2)/(x^(3)))dx

int(x-1)/(x^(2)-2x-3)dx

int(x^(2))/((1+x^(3))(2+x^(3)))dx

int(e^(x)+(1)/(x)+2x^(2)+3)dx

int((x-1))/(x^(2)-2x+3)dx

int(1+x+(x^(2))/(2!)+(x^(3))/(3!)+)dx

Evaluate int (x^(2))/((1+x^(3))(2+x^(3)))dx.

int(3x^(2)+1)/((x^(2)-1)^(3))dx

int(3x)/(1+x^(2))dx