Home
Class 12
MATHS
inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}d...

`inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx=?`

A

`e^(x)*(1)/(sqrt(1-x^(2)))+C`

B

`e^(x)sin^(-1)x+C`

C

`(-e^(x))/(sin^(-1)x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx \] ### Step 2: Use Substitution We will use the substitution: \[ t = e^x \sin^{-1} x \] Now, we need to differentiate \( t \) with respect to \( x \). ### Step 3: Differentiate Using the Product Rule Using the product rule, we have: \[ \frac{dt}{dx} = e^x \sin^{-1} x' + \sin^{-1} x \cdot (e^x)' \] Where: - \( \sin^{-1} x' = \frac{1}{\sqrt{1 - x^2}} \) - \( (e^x)' = e^x \) Thus, we can write: \[ \frac{dt}{dx} = e^x \cdot \frac{1}{\sqrt{1 - x^2}} + e^x \sin^{-1} x \] ### Step 4: Factor Out \( e^x \) Factoring out \( e^x \): \[ \frac{dt}{dx} = e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) \] ### Step 5: Rearranging for \( dx \) Now, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right)} \] ### Step 6: Substitute Back into the Integral Substituting this back into the integral, we have: \[ I = \int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx = \int dt \] ### Step 7: Integrate The integral of \( dt \) is: \[ I = t + C \] Substituting back for \( t \): \[ I = e^x \sin^{-1} x + C \] ### Final Answer Thus, the final result is: \[ \int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx = e^x \sin^{-1} x + C \]

To solve the integral \( I = \int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int e^(x)(sin^(-1)x+(1)/(sqrt(1-x^(2))))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int e^(sin^(-1)x)[1+(x)/(sqrt(1-x^(2)))]dx

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx

Let F(x)=int e^(sin^(-1)x)(1-(x)/(sqrt(1-x^(2))))dx and F(0)=1, If F((1)/(2))=(k sqrt(3)e^((pi)/(6)))/(pi), then the value of k is

int_(-1)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(dx)/((sin^(-1)x)sqrt(1-x^(2)))

Evaluate: (i) int5^(x)+tan(-1)x((x^(2)+2)/(x^(2)+1))dx (ii) int(e^(m)sin(-1)x)/(sqrt(1-x^(2)))dx