Home
Class 12
MATHS
inte^(x)(tanx+logsecx)dx=?...

`inte^(x)(tanx+logsecx)dx=?`

A

`e^(x)logsecx+C`

B

`e^(x)tanx+C`

C

`e^(x)(logcosx)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=inte^(x){f(x)+f'(x)}dx," where "f(x)=logsecx`
`=e^(x)f(x)+C=e^(x)logsecx+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

inte^(x)[tanx-log(cosx)]dx=

int e^x(tanx +sec^2x)dx

inte^x(tanx-logcosx)dx

Evaluate: inte^x(tanx-logcosx)dx

Evaluate inte^x(tanx+sec^2x)dx

Evaluate: int(1+tanx)/(x+logsecx)dx

inte^(-x)(1-tanx)secx dx is equal to

inte^(x)secx(1+tanx)dx=?

int(tanx)/(log(cosx))dx=

inte^(x)tanx(1+tanx)dx=