Home
Class 12
MATHS
inte^(x)(cotx+logsinx)dx=?...

`inte^(x)(cotx+logsinx)dx=?`

A

`e^(x)cotx+C`

B

`e^(x)logsinx+C`

C

`e^(x)sinx+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (\cot x + \log \sin x) \, dx \), we will follow a systematic approach using substitution and integration techniques. ### Step-by-Step Solution: 1. **Set Up the Integral**: Let \( I = \int e^x (\cot x + \log \sin x) \, dx \). 2. **Use Substitution**: We will use the substitution \( t = e^x \log \sin x \). To differentiate this, we will apply the product rule. 3. **Differentiate \( t \)**: \[ \frac{dt}{dx} = e^x \frac{d}{dx}(\log \sin x) + \log \sin x \frac{d}{dx}(e^x) \] Using the chain rule, we have: \[ \frac{d}{dx}(\log \sin x) = \frac{1}{\sin x} \cos x = \cot x \] Thus, \[ \frac{dt}{dx} = e^x \cot x + e^x \log \sin x \] 4. **Rearranging the Equation**: From the differentiation, we can write: \[ dt = (e^x \cot x + e^x \log \sin x) \, dx \] This implies: \[ dt = e^x (\cot x + \log \sin x) \, dx \] Therefore, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{e^x (\cot x + \log \sin x)} \] 5. **Integrating Both Sides**: Now substituting back into the integral: \[ I = \int dt \] This simplifies to: \[ I = t + C \] 6. **Substituting Back for \( t \)**: Recall that \( t = e^x \log \sin x \), so we have: \[ I = e^x \log \sin x + C \] ### Final Answer: Thus, the integral evaluates to: \[ \int e^x (\cot x + \log \sin x) \, dx = e^x \log \sin x + C \]

To solve the integral \( \int e^x (\cot x + \log \sin x) \, dx \), we will follow a systematic approach using substitution and integration techniques. ### Step-by-Step Solution: 1. **Set Up the Integral**: Let \( I = \int e^x (\cot x + \log \sin x) \, dx \). 2. **Use Substitution**: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(cotx)/(log(sinx))dx

inte^(x)(1-cotx+cot^(2)x)dx=

inte^(x)(1-cotx+cot^(2)x)dx=

inte^x(cotx-1-cot^2 x)dx=

inte^(3logsinx)cotx dx=

Evaluate: inte^x(cotx-cosec^2x)dx

intcos^3x*e^(logsinx)dx

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

inte^(x)(cotx-"cosec"^(2)x)dx=?