Home
Class 12
MATHS
inte^(x)[secx+log(secx+tanx)]dx=?...

`inte^(x)[secx+log(secx+tanx)]dx=?`

A

`e^(x)log(secx+tanx)+C`

B

`e^(x)secx+C`

C

`e^(x)logtanx+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=inte^(x){f(x)+f'(x)}dx," where "f(x)=log(secx+tanx)`
`=e^(x)f(x)+C=e^(x)log(secx+tanx)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intsecxlog(secx+tanx)dx

int sec x log(secx+tanx)dx=

int secx. log (sec x+ tan x ) dx

intsinxlog(secx+tanx)dx=

int(secx)/(log(secx+tanx))dx=

intsecx/(secx+tanx)dx

int secx cosec x log(tanx)dx=

Evaluate int secx/log(secx+tanx)dx

int(secx- tan x)/(sec x+ tan x) dx