Home
Class 12
MATHS
inte^(x){tan^(-1)x+(1)/((1+x^(2)))}dx=?...

`inte^(x){tan^(-1)x+(1)/((1+x^(2)))}dx=?`

A

`e^(x)*(1)/((1+x^(2)))+C`

B

`e^(x)tan^(-1)x+C`

C

`-e^(x)cot^(-1)x+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Let the integral be denoted as \( I \)**: \[ I = \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx \] 2. **Use substitution**: We will use the substitution: \[ t = e^x \tan^{-1} x \] To differentiate \( t \) with respect to \( x \), we will apply the product rule. 3. **Differentiate \( t \)**: Using the product rule: \[ \frac{dt}{dx} = e^x \tan^{-1} x + e^x \cdot \frac{1}{1 + x^2} \] This gives us: \[ \frac{dt}{dx} = e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) \] 4. **Rearranging for \( dx \)**: From the above equation, we can express \( dx \): \[ dx = \frac{dt}{e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right)} \] 5. **Substituting back into the integral**: Substitute \( dx \) back into the integral: \[ I = \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx = \int dt \] 6. **Integrate**: The integral of \( dt \) is simply: \[ I = t + C \] 7. **Substituting back for \( t \)**: Recall that \( t = e^x \tan^{-1} x \), so: \[ I = e^x \tan^{-1} x + C \] ### Final Answer: \[ \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx = e^x \tan^{-1} x + C \]

To solve the integral \( \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Let the integral be denoted as \( I \)**: \[ I = \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

Evaluate: int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

Find int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int(tan^(-1)x)/((1+x)^(2))dx

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int e^(tan^(1)x)(1+(x)/(1+x^(2)))dx

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int(tan^(-1)x)/(1+x^(2)) dx=?