Home
Class 12
MATHS
inte^x(tanx-logcosx)dx...

`inte^x(tanx-logcosx)dx`

A

`e^(x)tanx+C`

B

`e^(x)logcosx+C`

C

`e^(x)logsecx+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=inte^(x){f(x)+f'(x)}dx," where "f(x)=logsecx`
`=e^(x)f(x)+C=e^(x)logsecx+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(tanx+logsecx)dx

inte^(x)(tanx+logsecx)dx=?

inte^(x)[tanx-log(cosx)]dx=

int(tanx)/(log(cosx))dx=

int2^(tanx)/(cos^2x)dx

Evaluate inte^x(tanx+sec^2x)dx

int e^x(tanx +sec^2x)dx

int(tanx)/(cos^(2)x)dx

int((1-tanx)/(x+logcosx))dx

int(tanx-cotx)^(2)dx=