Home
Class 12
MATHS
inte^(x)(cotx-"cosec"^(2)x)dx=?...

`inte^(x)(cotx-"cosec"^(2)x)dx=?`

A

`-e^(x)"cosec"^(2)x+C`

B

`e^(x)"cotx+C`

C

`-e^(x)"cotx+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \left( \cot x - \csc^2 x \right) dx \), we can break it down into two separate integrals: \[ \int e^x \cot x \, dx - \int e^x \csc^2 x \, dx \] Let's denote these two integrals as \( I_1 \) and \( I_2 \): 1. **First Integral**: \( I_1 = \int e^x \cot x \, dx \) 2. **Second Integral**: \( I_2 = \int e^x \csc^2 x \, dx \) ### Step 1: Solve \( I_1 = \int e^x \cot x \, dx \) To solve \( I_1 \), we will use integration by parts. We can let: - \( u = \cot x \) (first function) - \( dv = e^x \, dx \) (second function) Now we need to find \( du \) and \( v \): - \( du = -\csc^2 x \, dx \) - \( v = e^x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_1 = e^x \cot x - \int e^x (-\csc^2 x) \, dx \] This simplifies to: \[ I_1 = e^x \cot x + \int e^x \csc^2 x \, dx \] ### Step 2: Substitute \( I_2 \) into \( I_1 \) Now we can substitute \( I_2 \) back into the equation for \( I_1 \): \[ I_1 = e^x \cot x + I_2 \] ### Step 3: Solve for \( I_2 \) Now we have: \[ I = I_1 - I_2 \] Substituting \( I_1 \): \[ I = (e^x \cot x + I_2) - I_2 \] This simplifies to: \[ I = e^x \cot x \] ### Step 4: Final Result Thus, we have: \[ \int e^x \left( \cot x - \csc^2 x \right) dx = e^x \cot x + C \] where \( C \) is the constant of integration.

To solve the integral \( \int e^x \left( \cot x - \csc^2 x \right) dx \), we can break it down into two separate integrals: \[ \int e^x \cot x \, dx - \int e^x \csc^2 x \, dx \] Let's denote these two integrals as \( I_1 \) and \( I_2 \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(cotx-cosec^2x)dx

inte^(x)(1-cotx+cot^(2)x)dx=

inte^(x)(1-cotx+cot^(2)x)dx=

int cotx cosec^(2)xdx

int"cosec"^(2)(2x+5)dx

int (sec^(2)x)/(cosec^(2)x) dx

int e^(cotx) cosec^2 xdx

int cotx cosec^2x dx

int e^(x)cosec^(2)(e^(x))dx