Home
Class 12
MATHS
inte^(x)secx(1+tanx)dx=?...

`inte^(x)secx(1+tanx)dx=?`

A

`e^(x)(1+tanx)+C`

B

`e^(x)secx+C`

C

`e^(x)tanx+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=inte^(x){f(x)+f'(x)}dx," where "f(x)=secx`
`=e^(x)secx+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

inte^(x)tanx(1+tanx)dx=

int(tanx)/(secx+tanx)dx=

inttan^(-1)(secx+tanx)dx=?

int(1)/(a secx+b tanx)dx=

int(1)/(secx+tanx)dx=

intsecx/(secx+tanx)dx

intsecxlog(secx+tanx)dx

int(1-tanx)/(1+tanx)dx=

Evaluate int(tanx)/(secx+tanx)dx