Home
Class 12
MATHS
inte^(x)*(x)/((1+x)^(2))dx=?...

`inte^(x)*(x)/((1+x)^(2))dx=?`

A

`e^(x)*(1)/((1+x))+C`

B

`e^(x)*(1)/(x)+C`

C

`e^(x)*(x)/((1+x))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{e^x \cdot x}{(1+x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{e^x \cdot x}{(1+x)^2} \, dx \] We can express \( x \) as \( (1+x) - 1 \): \[ I = \int \frac{e^x \cdot ((1+x) - 1)}{(1+x)^2} \, dx \] This simplifies to: \[ I = \int \frac{e^x \cdot (1+x)}{(1+x)^2} \, dx - \int \frac{e^x}{(1+x)^2} \, dx \] Thus, we can separate the integral into two parts: \[ I = \int \frac{e^x}{1+x} \, dx - \int \frac{e^x}{(1+x)^2} \, dx \] ### Step 2: Define the First Integral Let’s denote the first integral as \( I_1 \): \[ I_1 = \int \frac{e^x}{1+x} \, dx \] ### Step 3: Use Integration by Parts for \( I_1 \) To solve \( I_1 \), we will use integration by parts. We choose: - \( u = \frac{1}{1+x} \) (first function) - \( dv = e^x \, dx \) (second function) Then, we compute \( du \) and \( v \): \[ du = -\frac{1}{(1+x)^2} \, dx \quad \text{and} \quad v = e^x \] Using integration by parts: \[ I_1 = uv - \int v \, du \] Substituting the values: \[ I_1 = \frac{e^x}{1+x} - \int e^x \left(-\frac{1}{(1+x)^2}\right) \, dx \] This simplifies to: \[ I_1 = \frac{e^x}{1+x} + \int \frac{e^x}{(1+x)^2} \, dx \] ### Step 4: Substitute \( I_1 \) Back into \( I \) Now, substituting \( I_1 \) back into the expression for \( I \): \[ I = \left( \frac{e^x}{1+x} + \int \frac{e^x}{(1+x)^2} \, dx \right) - \int \frac{e^x}{(1+x)^2} \, dx \] The integrals \( \int \frac{e^x}{(1+x)^2} \, dx \) cancel out: \[ I = \frac{e^x}{1+x} + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{e^x \cdot x}{(1+x)^2} \, dx = \frac{e^x}{1+x} + C \]

To evaluate the integral \( \int \frac{e^x \cdot x}{(1+x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{e^x \cdot x}{(1+x)^2} \, dx \] We can express \( x \) as \( (1+x) - 1 \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

" 4.Evaluate: "int e^(x)((x-1)/(x^(2)))dx

int[e^(x)(1/x-1/(x^(2)))]dx

int(x^(2)-x-2)/(1-x^(2))dx

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

int(x e^(x))/((1+x)^(2)) dx is equal to

inte^(x){(1)/(x)-(1)/(x^(2))}dx=?

int e^(x)""((x-1)/(x^(2)))dx is equal to

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

int((1+x)^(2))/(x(1+x^(2)))dx=